机器学习专栏(32):决策树——从游戏20问看透分类本质

目录

导读

一、初识决策树:大自然的分类法则

1. 决策树类比生活场景

2. 机器学习中的决策树三要素

二、5分钟构建鸢尾花分类器

1. 数据准备与模型训练

2. 决策树可视化(Graphviz安装指南)

三、解密决策树:节点背后的数学逻辑

1. 基尼不纯度计算示例

2. 决策边界可视化

四、决策树调参速查表

五、思维导图:决策树核心要点

 六、避坑指南:五大常见误区

过拟合陷阱

特征忽略危机

数据泄露隐患

类别不平衡

解释性误解

总结


导读

决策树如同游戏中的"20个问题",通过层层提问逼近真相。本文将以鸢尾花分类为例,手把手构建你的第一个决策树模型,揭秘树形决策背后的逻辑,并可视化关键决策节点。文末附分类规则思维导图模型调参速查表,让复杂分类问题一目了然!


一、初识决策树:大自然的分类法则

1. 决策树类比生活场景

2. 机器学习中的决策树三要素

  • 节点:特征判断(如"花瓣长度≤2.45cm?")

  • 分支:判断结果(是/否)

  • 叶子:最终类别(山鸢尾/变色鸢尾/维吉尼亚鸢尾)


二、5分钟构建鸢尾花分类器

1. 数据准备与模型训练

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

# 加载数据(仅使用花瓣长度和宽度)
iris = load_iris()
X = iris.data[:, 2:]  # 花瓣长度和宽度
y = iris.target

# 训练深度为2的决策树
tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X, y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值