目录
导读
决策树如同游戏中的"20个问题",通过层层提问逼近真相。本文将以鸢尾花分类为例,手把手构建你的第一个决策树模型,揭秘树形决策背后的逻辑,并可视化关键决策节点。文末附分类规则思维导图与模型调参速查表,让复杂分类问题一目了然!
一、初识决策树:大自然的分类法则
1. 决策树类比生活场景
2. 机器学习中的决策树三要素
-
节点:特征判断(如"花瓣长度≤2.45cm?")
-
分支:判断结果(是/否)
-
叶子:最终类别(山鸢尾/变色鸢尾/维吉尼亚鸢尾)
二、5分钟构建鸢尾花分类器
1. 数据准备与模型训练
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
# 加载数据(仅使用花瓣长度和宽度)
iris = load_iris()
X = iris.data[:, 2:] # 花瓣长度和宽度
y = iris.target
# 训练深度为2的决策树
tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X, y)