机器学习专栏(43):核主成分分析(kPCA)深度解析(附完整代码与可视化)

目录

一、核技巧与非线性降维原理

1.1 核函数数学本质

1.2 瑞士卷数据集处理对比

二、Scikit-Learn实战:参数优化全流程

2.1 超参数网格搜索模板

2.2 重构原像误差优化

三、工业级应用:图像特征提取

3.1 人脸数据集非线性降维 

3.2 图像压缩与重建

四、高阶技巧:大规模kPCA优化

4.1 Nyström近似方法

4.2 内存优化策略对比

五、常见问题与解决方案

5.1 kPCA陷阱诊断表

5.2 核函数选择指南

六、前沿进展与最佳实践

6.1 深度核学习方法

6.2 全流程最佳实践


一、核技巧与非线性降维原理

1.1 核函数数学本质

核函数定义
k(x, y) = \phi(x)^T \phi(y)

常用核函数

  • RBF核:exp(-γ||x-y||²)

  • 多项式核:(γxᵀy + r)^d

  • Sigmoid核:tanh(γxᵀy + r)

1.2 瑞士卷数据集处理对比

from sklearn.datasets import make_swiss_roll
from sklearn.decomposition import KernelPCA

X, color = make_swiss_roll(n_samples=1000, noise=0.1)

# 不同核函数效果对比
kernels = ['linear', 'rbf', 'sigmoid', 'cosine']
plt.figure(figsize=(15,10))

for i, kernel in enumerate(kernels):
    kpca = KernelPCA(n_components=2, kernel=kernel, gamma=0.04)
    X_reduced = kpca.fit_transform(X)
    
    plt.subplot(2, 2, i+1)
    plt.scatter(X_reduced[:,0], X_reduced[:,1], c=color, cmap=plt.cm.Spectral)
    plt.title(f'Kernel: {kernel.upper()}')

二、Scikit-Learn实战:参数优化全流程

2.1 超参数网格搜索模板

from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC

# 构建kPCA+SVM流水线
pipe = Pipeline([
    ('kpca', KernelPCA(n_components=2)),
    ('svm', SVC())
])

# 定义参数网格
param_grid = [{
    'kpca__kernel': ['rbf', 'sigmoid'],
    'kpca__gamma': np.linspace(0.03, 0.05, 10),
    'kpca__n_components': [2, 3],
    'svm__C': [0.1, 1, 10]
}]

# 执行网格搜索
grid = GridSearchCV(pipe, param_grid, cv=3)
grid.fit(X_train, y_train)

print(f"最佳参数组合: {grid.best_params_}")
print(f"最佳验证准确率: {grid.best_score_:.3f}")

2.2 重构原像误差优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值