目录
一、LLE数学本质:流形学习的几何密码
1.1 核心思想:局部线性与全局拓扑的平衡
LLE的核心在于用局部线性关系近似全局非线性结构。假设高维数据在局部邻域内是线性可重构的,并通过保持这些线性关系将数据映射到低维空间8。其数学本质可分解为两个优化阶段:
阶段一:局部权重优化
其中是样本
的k近邻集合,
为重构权重。
阶段二:低维嵌入优化
通过求解特征值问题获得低维坐标Y,对应权重矩阵的最小非零特征向量。
from sklearn.manifold import LocallyLinearEmbedding
# 瑞士卷数据降维示例
lle = LocallyLinearEmbedding(n_components=2, n_neighbors=12)
X_reduced = lle.fit_transform(X_swiss)
二、算法改进:突破传统局限的四大策略
2.1 测地距离优化:GRDLLE算法
传统LLE使用欧氏距离度量邻域,但高维流形数据需测地距离(Geodesic Distance)。改进方案:
-
构建邻接图,用Dijkstra算法计算最短路径近似测地距离
-
引入Rank-order距离增强流形结构保留能力
# 测地距离计算伪代码
from sklearn.neighbors import kneighbors_graph
import networkx as nx
adj_matrix = kneighbors_graph(X, n_neighbors=15, mode='distance')
G = nx.from_scipy_sparse_array(adj_matrix)
geodesic_dist = nx.shortest_path_length(G, weight='weight')
实验对比:在ORL人脸数据集上,GRDLLE相比传统LLE识别率提升8.3%4。
2.2 监督信息融合:SLLE算法
针对分类任务,引入类别约束改进邻域选择:
其中