机器学习专栏(35):正则化方法全解析(附完整代码)

目录

一、为什么需要正则化?

二、正则化:模型界的"防沉迷系统"

三、三大正则化武器库

1. 岭回归:温和的平衡大师

2. Lasso回归:精准的特征刺客

3. 弹性网络:智能的混血战士

四、提前停止:聪明的学习管家

1. 实现原理可视化:

2.TensorFlow实现示例:

五、工业级应用指南

1. 特征预处理黄金法则

 2. 超参数优化路线图

 3. 模型诊断checklist

六、避坑指南:新手常见错误

七、进阶技巧:正则化组合拳

1. 动态正则化策略:

八、最佳实践总结


一、为什么需要正则化?

过拟合是机器学习中的常见问题。想象一下,一个学生为了数学考试,死记硬背了1000道题,但遇到新题型时完全不会做——这就是过拟合。正则化就是给模型"戴上枷锁",防止它过于复杂。

正则化核心思想:在损失函数中加入惩罚项,限制权重的大小。常用方法有:

  • ✅ 岭回归(Ridge Regression)

  • ✅ Lasso回归(Lasso Regression)

  • ✅ 弹性网络(Elastic Net)

  • ✅ 提前停止(Early Stopping)

二、正则化:模型界的"防沉迷系统"

真实案例:某电商平台商品推荐模型

  • 原始模型:200个特征,测试集准确率98%

  • 上线效果:用户点击率下降15%

  • 诊断结果:模型过度记忆了历史促销噪声

  • 解决方案:加入L2正则化,特征精简至30个核心特征,点击率提升22%

三、三大正则化武器库

1. 岭回归:温和的平衡大师

数学本质

J(\theta) = \underbrace{\frac{1}{2m}\sum_{i=1}^m(h_\theta(x^{(i)}) - y^{(i)})^2}_{\text{MSE}} + \underbrace{\alpha\frac{1}{2}\sum_{j=1}^n\theta_j^2}_{\text{L2 regularization term}}

 动态演示效果

import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge

alphas = [0, 1, 10, 100]
coefs = []
for a in alphas:
    ridge = Ridge(alpha=a).fit(X, y)
    coefs.append(ridge.coef_)

plt.figure(figsize=(10,6))
plt.plot(alphas, coefs)
plt.xscale('log')
plt.title("岭回归系数收缩轨迹")
plt.xlabel('α')
plt.ylabel('系数值')
plt.show()

2. Lasso回归:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值