机器学习专栏(50):优化器全景解读——从入门到调参实战(附完整代码与决策地图)

目录

一、优化器演进史:从SGD到智能自适应

1.1 优化器选择决策树

二、核心优化器原理与代码实现

2.1 动量优化:保龄球下山算法

2.2 Nesterov加速梯度:预见性动量

2.3 Adam:动量与自适应的完美融合

三、优化器性能可视化实验

3.1 二维损失曲面轨迹对比

四、学习率调度:训练加速的隐形引擎

4.1 主流调度策略对比表

4.2 动态学习率代码实战

五、工业级调参指南

5.1 优化器超参默认值参考

5.2 性能优化组合拳

六、前沿优化器探索

6.1 Lion优化器:符号函数新范式

6.2 优化器选择趋势(2025)

 七、常见陷阱与破解之道

7.1 梯度爆炸诊断流程

7.2 优化器失灵案例分析

附录:优化器速查手册


一、优化器演进史:从SGD到智能自适应

1.1 优化器选择决策树

 

二、核心优化器原理与代码实现

2.1 动量优化:保龄球下山算法

物理类比

保龄球从山顶滚落,初始速度慢但动量逐渐累积,最终高速抵达谷底

数学本质

Keras实现

keras.optimizers.SGD(
    learning_rate=0.01, 
    momentum=0.9, 
    nesterov=False
)

2.2 Nesterov加速梯度:预见性动量

优化关键
在动量方向的前瞻点计算梯度,提前修正路径

公式升级

代码对比

# 启用Nesterov加速
keras.optimizers.SGD(
    learning_rate=0.01, 
    momentum=0.9, 
    nesterov=True
)

2.3 Adam:动量与自适应的完美融合

核心公式

工业级配置

keras.optimizers.Adam(
    learning_rate=0.001,
    beta_1=0.9, 
    beta_2=0.999,
    epsilon=1e-07,
    amsgrad=False
)

三、优化器性能可视化实验

3.1 二维损失曲面轨迹对比

# 定义测试函数(Beale函数)
def beale(x, y):
    return (1.5 - x + x*y)**2 + (2.25 - x + x*y**2)**2 + (2.625 - x + x*y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值