机器学习专栏(80):策略梯度算法实战——从理论到CartPole完美平衡

目录

一、REINFORCE算法深度解析

1.1 算法数学原理

1.2 核心代码实现

二、关键函数实现细节

2.1 折扣回报计算优化

2.2 梯度累积与更新机制

三、性能优化策略

3.1 奖励塑形技术

3.2 并行采样加速

四、Actor-Critic算法进阶

4.1 算法架构革新

4.2 训练效果对比

五、工业级应用实践

5.1 模型部署优化

六、前沿扩展方向

6.1 基于Transformer的策略网络

6.2 元强化学习框架

七、常见问题与解决方案

7.1 梯度消失问题

7.2 探索不足问题

八、完整训练可视化

8.1 训练过程监控

8.2 策略决策可视化

九、实战建议与技巧

十、学习资源与社区


一、REINFORCE算法深度解析

1.1 算法数学原理

策略梯度定理的数学表达:

关键步骤分解

1.2 核心代码实现

class PolicyGradientAgent:
    def __init__(self, state_dim, action_dim, lr=0.01, gamma=0.95):
        self.model = self.build_model(state_dim, action_dim)
        self.optimizer = tf.keras.optimizers.Adam(lr)
        self.gamma = gamma

    def build_model(self, state_dim, action_dim):
        model = tf.keras.Sequential([
            tf.keras.layers.Dense(64, activation='relu', input_shape=(state_dim,)),
            tf.keras.layers.Dense(action_dim, activation='softmax')
        ])
        return model

    def get_action(self, state):
        prob = self.model.predict(state[np.newaxis], verbose=0)[0]
        return np.random.choice(len(prob), p=prob)

    def train(self, states, actions, rewards):
        discounted_rewards = self.discount_and_normalize(rewards)
        
        with tf.GradientTape() as tape:
            probs = self.model(states)
            action_probs = tf.reduce_sum(probs * tf.one_hot(actions, depth=2), axis=1)
            loss = -tf.reduce_mean(tf.math.log(action_probs) * discounted_rewards)
        
        grads = tape.gradient(loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables))

二、关键函数实现细节

2.1 折扣回报计算优化

def discount_rewards(self, rewards):
    discounted = np.zeros_like(rewards, dtype=np.float32)
    running_add = 0
    for t in reversed(range(len(rewards))):
        running_add = running_add * self.gamma + rewards[t]
        discounted[t] = running_add
    return (discounted - np.mean(discounted)) / (np.std(discounted) + 1e-8)
折扣因子影响实验数据
γ值 平均训练回合数 最大奖励 收敛稳定性
0.8 85 ± 12 200 ★★★☆☆
0.9 62 ± 8 200 ★★★★☆
0.95 45 ± 5 200 ★★★★★
0.99 120 ± 20 200 ★★☆☆☆

2.2 梯度累积与更新机制

三、性能优化策略

3.1 奖励塑形技术

CartPole环境改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值