机器学习专栏(82):深度Q学习(DQN)——从理论到CartPole实战

目录

一、传统Q学习的局限性

1.1 维度灾难实例分析

二、深度Q网络(DQN)核心突破

2.1 神经网络架构设计

2.2 关键技术革新

三、DQN核心组件实现

3.1 经验回放机制

3.2 目标网络更新策略

四、CartPole环境训练实战

4.1 训练流程代码

4.2 训练效果可视化

五、关键技术改进方案

5.1 Double DQN

5.2 Dueling DQN

六、工业级优化技巧

6.1 优先级经验回放

6.2 分布式训练架构

七、前沿研究方向

7.1 基于Transformer的DQN

 7.2 元强化学习框架

八、实践建议与调试技巧

8.1 超参数调优指南

8.2 常见问题诊断

九、从模拟到现实:部署实践

9.1 模型量化部署

9.2 在线服务架构

十、未来展望与挑战


一、传统Q学习的局限性

1.1 维度灾难实例分析

# Ms. Pac-Man状态空间估算
num_pellets = 150
possible_states = 2 ** num_pellets  # 约1.4e45
print(f"理论状态空间大小: {possible_states:.1e}")
传统Q表存储需求
状态数 动作数 存储空间(32位浮点)
1e6 4 16 MB
1e45 4 3.6e39 TB

二、深度Q网络(DQN)核心突破

2.1 神经网络架构设计

def build_dqn(input_shape, action_dim):
    model = tf.keras.Sequential([
        layers.Dense(64, activation='relu', input_shape=input_shape),
        layers.LayerNormalization(),
        layers.Dense(64, activation='relu'),
        layers.Dropout(0.2),
        layers.Dense(action_dim)
    ])
    return model

2.2 关键技术革新

三、DQN核心组件实现

3.1 经验回放机制

class ReplayBuffer:
    def __init__(self, capacity=10000):
        self.buffer = deque(maxlen=capacity)
    
    def add(self, state, action, reward, next_state, done):
        self.buffer.append( (state, action, reward, next_state, done) )
    
    def sample(self, batch_size):
        indices = np.random.choice(len(self.buffer), batch_size)
        return [self.buffer[i] for i in indices]

3.2 目标网络更新策略

class DQNAgent:
    def __init__(self, state_dim, action_dim):
        self.model = build_dqn(state_dim, action_dim)
        self.target_model = tf.keras.models.clone_model(self.model)
        self.update_target_network()
    
    def update_target_network(self):
        self.target_model.set_weights(self.model.get_weights())

四、CartPole环境训练实战

4.1 训练流程代码

def train_dqn(env, episodes=500, batch_size=64, gamma=0.95):
    agent = DQNAgent(env.observation_space.shape[0], env.action_space.n)
    buffer = ReplayBuffer()
    epsilon = 1.0
    rewards_history = []
    
    for ep in range(episodes):
        state = env.reset()
        total_reward = 0
        
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值