Problem Description
To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.
—— William Blake
听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家,虽然他手上有所有人的联系方式,但是一个一个联系过去实在太耗时间和电话费了。他知道其他人也有一些别人的联系方式,这样他可以通知其他人,再让其他人帮忙通知一下别人。你能帮Wiskey计算出至少要通知多少人,至少得花多少电话费就能让所有人都被通知到吗?
Input
多组测试数组,以EOF结束。
第一行两个整数N和M(1<=N<=1000, 1<=M<=2000),表示人数和联系对数。
接下一行有N个整数,表示Wiskey联系第i个人的电话费用。
接着有M行,每行有两个整数X,Y,表示X能联系到Y,但是不表示Y也能联系X。
Output
输出最小联系人数和最小花费。
每个CASE输出答案一行。
Sample Input
12 16
2 2 2 2 2 2 2 2 2 2 2 2
1 3
3 2
2 1
3 4
2 4
3 5
5 4
4 6
6 4
7 4
7 12
7 8
8 7
8 9
10 9
11 10
Sample Output
3 6
思路: 首先判断强连通分量,缩点,如果两个强连通分量有通路则只需通知入度为零的那一个强连通分量中花费最少的人即可,详情见注释
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack>
using namespace std;
const int MAX=1e3+10,inf=0x7fffffff;
vector<int> v[MAX];//存路
stack<int> s;//栈,用来储存和清除连接的点,若连通该强连通分量所有点都会出栈
int n,m,x,y,num,sum,cnt;
int dfn_clock;//每个时间戳的标号
int s_s[MAX];//记录当前点所在哪一个强连通分量内
int dfn[MAX];//时间戳
bool instack[MAX];//判断该点是否在栈内
int low[MAX];//记录所属强连通
int cost[MAX];//记录ACMer打电话到每个人的费用
int min_cost[MAX];//记录联系当前强连通分量中电话费最少的
int in[MAX];//入度
void tarjan(int x) {
dfn[x]=low[x]=++dfn_clock;
s.push(x);
instack[x]=true;
for(int i=0; i<v[x].size(); i++) {
int u=v[x][i];
if(!dfn[u]) {
tarjan(u);
low[x]=min(low[x],low[u]);
} else if(instack[u])
low[x]=min(low[x],dfn[u]);
}
if(dfn[x]==low[x]) {
int u,minn=inf;
cnt++;
do {
u=s.top();
s.pop() ;
instack[u]=false;
s_s[u]=cnt;
if(cost[u]<minn)
minn=cost[u];
} while(u!=x);
min_cost[cnt]=minn;
}
}
void find() {//如果是两个图中间或某一个点与其它点都不连通,也要算作一个强连通;
dfn_clock=cnt=0;
for(int i=1; i<=n; i++)
if(!dfn[i])
tarjan(i);
}
void init() {
memset(min_cost,0,sizeof(min_cost));
memset(s_s,0,sizeof(s_s));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(cost,0,sizeof(cost));
memset(in,0,sizeof(in));
for(int i=1;i<=n;i++)
v[i].clear() ;
}
void solve() {
while(~scanf("%d %d",&n,&m)) {
init();
for(int i=1; i<=n; i++)
scanf("%d",&cost[i]);
for(int i=1; i<=m; i++) {
scanf("%d %d",&x,&y);
v[x].push_back(y);
}
find();
for(int i=1; i<=n; i++) {
for(int j=0; j<v[i].size() ; j++) {
int u=v[i][j];
if(s_s[i]!=s_s[u])
in[s_s[u]]++;
}
}
num=0,sum=0;
for(int i=1; i<=cnt; i++)
if(in[i]==0) {
num++;
sum+=min_cost[i];
}
printf("%d %d\n",num,sum);
}
}
int main() {
solve();
return 0;
}