HDU6061 RXD and functions[NTT]

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ControlBear/article/details/76578263

RXD and functions

 HDU - 6061






题意:

给你一个函数,根据Tr的转换为g(x),即

初始值,规律为,最后求出第m项,将系数按顺序输出。

(①这题的输出,最后有个空格,必须也输出。②题目给的要求求的最后的式子,应该是n不是m。)


题解:

首先推荐一篇学多项式乘法的文章

http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform#i-17


官方题解


官方题解其实说了,我们最后转化出来的式子就是题解那个。

但是,只有这个式子,不会求啊。(其实就是自己不熟悉知识点+自己太蠢【这才是重点吧】)

首先,我们可以直接得到这个式子。(我们用s表示,下面都是这样)

根据二项式定理,我们可以进一步拆开


同时,把组合数也拆开,我们最后可以得到,这看上去还没什么感觉对吧T_T。

那么我们转换一下这个式子的形式,可以得到(至于为什么可以变成这个样子,如果自己没办法好好这样转换,手动画个矩阵来看看你就知道了【别问我为啥知道】)

关于这个式子,我们总算可以看到一点东西了吧,只要将这个写成

再稍作整理一下,会发现后面的式子,非常非常像我们要的卷积公式。


然后,从我刚才推荐的文章中,里面有这样的一个小tips

,这就成了我们最终需要的公式了。

【跟集训队的巨巨讨论这个题,别人有提示就会做了,我还让他给我解释一番,果然我好菜T_T】


#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<assert.h>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e5+5;
const int K=(1<<18)+5;
const int mod=998244353;
const int G=3;
int c[N],A[K],B[K],fac[N],inv[N],sq[N];
int n,m;
int Pow(ll n,ll m)
{
    n%=mod;
    int ans=1;
    while (m)
    {
        if (m&1)
            ans=(ll)ans*n%mod;
        n=(ll)n*n%mod;
        m>>=1;
    }
    return ans;
}
int wn[K];
void initial()
{
    for (int i=0 ; i<K ; ++i)
    {
        int t=1<<i;
        wn[i]=Pow(G,(mod-1)/t);
    }
    fac[0]=1;
    for (int i=1 ; i<N ; ++i)
        fac[i]=(ll)fac[i-1]*i%mod;
    inv[N-1]=Pow(fac[N-1],mod-2);
    for (int i=N-2 ; i>=0 ; --i)
        inv[i]=(ll)inv[i+1]*(i+1)%mod;
}
void change(int x[],int len)
{
    for (int i=1,j=len/2 ; i<len-1 ; ++i)
    {
        if (i<j)
            swap(x[i],x[j]);
        int k=len/2;
        while (j>=k)
        {
            j-=k;
            k/=2;
        }
        if (j<k)
            j+=k;
    }
}
void NTT(int x[],int len,int dft)
{
    change(x,len);
    int id=0;
    for (int h=2 ; h<=len ; h<<=1)
    {
        ++id;
        assert(id<K);
        for (int j=0 ; j<len ; j+=h)
        {
            int w=1;
            for (int k=j ; k<j+h/2 ; ++k)
            {
                int u=(ll)x[k];
                int t=(ll)w*x[k+h/2]%mod;
                x[k]=(u+t)%mod;
                x[k+h/2]=(u-t+mod)%mod;
                w=(ll)w*wn[id]%mod;
            }
        }
    }
    if (dft==-1)
    {
        for (int i=1 ; i<len/2 ; ++i)
            swap(x[i],x[len-i]);
        int dl=Pow(len,mod-2);
        for (int i=0 ; i<len ; ++i)
            x[i]=(ll)x[i]*dl%mod;
    }
}
void solve(int a[],int s)
{
    if (!s)
    {
        for (int i=0 ; i<=n ; ++i)
            A[i]=c[i];
        return ;
    }
    s=(-s+mod)%mod;
    int len=1;
    int m=(n<<1)+1;
    while (len<m)
        len<<=1;
    sq[0]=1;
    for (int i=1 ; i<=n ; ++i)
        sq[i]=(ll)sq[i-1]*s%mod;
    memset(A,0,sizeof(A));
    memset(B,0,sizeof(B));
    for (int i=0 ; i<=n ; ++i)
    {
        A[i]=(ll)c[i]*fac[i]%mod;
        B[i]=(ll)sq[n-i]*inv[n-i]%mod;
    }
    NTT(A,len,1);
    NTT(B,len,1);
    for (int i=0 ; i<len ; ++i)
        A[i]=(ll)A[i]*B[i]%mod;
    NTT(A,len,-1);
    for (int i=0 ; i<=n ; ++i)
        A[i]=(ll)A[i+n]*inv[i]%mod;
}
int main()
{
    initial();
    while (~scanf("%d",&n))
    {
        for (int i=0 ; i<=n ; ++i)
            scanf("%d",&c[i]);
        scanf("%d",&m);
        int sum=0;
        for (int i=0 ; i<m ; ++i)
        {
            int x;
            scanf("%d",&x);
            sum=((ll)sum+x)%mod;
        }
        solve(c,sum);
        for (int i=0 ; i<=n ; ++i)
            printf("%d ",A[i]);
        printf("\n");
    }
    return 0;
}



阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页