SPOJ VLATTICE Visible Lattice Points[莫比乌斯反演]


题意:

存在一个N*N*N的正方体,你从(0,0,0)点开始看过去,能看到多少个点。


题解:

结果是三种情况的求和。

① 当 x,y,z 其中两个为0,另外一个为非0的情况 那么我们可以看到 (1,0,0) (0,1,0) (0,0,1)


② 当 x,y,z 其中一个为0,另外两个为非0的情况,就是转换为二维的情况,并且这样的面有三个。

这种情况的时候  f(d) 为 gcd(x,y)==d || gcd(x,z)==d || gcd(y,z)==d 的情况

F(d)表示满足 gcd(x,y) 的结果是d的倍数 

并且F(d)我们可以直接算出来

 因为我们的最终结果,只要gcd(x,y)==1 所以我们只需要求f(1)。

  乘3是因为一共是三个面。


③当 x,y,z 都非0,那么我们能看到的点就是gcd(x,y,z)==1的点,这时的 f(d) 就代表 gcd(x,y,z)==d 的情况。

F(d)表示满足 gcd(x,y,z) 的结果是d的倍数。

,我们也只需要求f(1)。

那么最后


最后将这三种情况加起来,就是我们要的结果了。



#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e6+5;
bool mark[N];
int prim[N],mu[N],smu[N];
int cnt;
void initial()
{
    mu[1]=smu[1]=1;
    cnt=0;
    for (int i=2 ; i<N ; ++i)
    {
        if (!mark[i])
        {
            prim[cnt++]=i;
            mu[i]=-1;
        }
        for (int j=0 ; j<cnt && i*prim[j]<N ; ++j)
        {
            mark[i*prim[j]]=1;
            if (!(i%prim[j]))
            {
                mu[i*prim[j]]=0;
                break;
            }
            mu[i*prim[j]]=-mu[i];
        }
        smu[i]=smu[i-1]+mu[i];
    }
}
int main()
{
    initial();
	int T;
	scanf("%d",&T);
	while (T--)
    {
        int n;
        scanf("%d",&n);
        ll ans=3;
        for (int i=1,ed=0 ; i<=n ; i=ed+1)
        {
            ed=n/(n/i);
            ans+=(ll)(smu[ed]-smu[i-1])*(n/i)*(n/i)*(n/i);
            ans+=(ll)(smu[ed]-smu[i-1])*(n/i)*(n/i)*3;
        }
        printf("%lld\n",ans);
    }
	return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ControlBear/article/details/77451345
文章标签: SPOJ 莫比乌斯反演
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭