DFS的进一步运用——扫雷问题

原题目:https://leetcode.com/problems/minesweeper/

该题用一个二维字符向量来模仿扫雷游戏。一开始有地雷的地方会填上M,其他的则是B。当点击一个格子,即输入它的坐标时,如果该点是地雷,则会变成X;若不是,则会揭示与其相连的所有非地雷的格子,并将靠近地雷的格子进行数字标识,数值为周围地雷的个数。

该题可以使用深度优先算法解决:对于一个不是地雷的格子,可以对其周围8个格子进行相同的搜索,然后再用这8个格子中的一个进行进一步搜索,直到遇到地雷或是边界为止。

在搜索到地雷后,就会使计数值增加。搜索完毕后,若计数值为0,则说明周围没有地雷,填上B;反之,则填上数值。


DFS函数部分代码:



DFS(深度优先搜索)可以用于解决迷宫出口问题。 首先,我们需要将迷宫转化为图,其中每个房间是图中的一个节点,每个房间之间的通道是图中的一条边。我们可以用一个二维数组来表示迷宫,其中0表示墙,1表示通道。 然后,我们可以使用DFS来搜索迷宫。我们从起点开始探索,每次选择一个未被访问的相邻节点进行探索,直到找到出口为止。为了避免陷入死循环,我们需要记录已经访问过的节点。 具体实现可以使用递归或者栈来实现DFS,以下是一个使用递归的示例代码(假设起点为(0,0),出口为(n-1,m-1)): ```python def dfs(x, y, visited, maze): # 判断当前节点是否为出口 if x == len(maze)-1 and y == len(maze[0])-1: return True # 标记当前节点已被访问 visited[x][y] = True # 搜索相邻节点 for dx, dy in [(0,1), (0,-1), (1,0), (-1,0)]: nx, ny = x+dx, y+dy # 判断相邻节点是否合法 if 0 <= nx < len(maze) and 0 <= ny < len(maze[0]) and maze[nx][ny] == 1 and not visited[nx][ny]: # 递归搜索相邻节点 if dfs(nx, ny, visited, maze): return True return False # 测试 maze = [ [1, 0, 1, 1, 1], [1, 0, 1, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 0, 1], [0, 0, 0, 0, 1] ] visited = [[False for _ in range(len(maze[0]))] for _ in range(len(maze))] print(dfs(0, 0, visited, maze)) # 输出True,表示存在从起点到出口的路径 ``` 这段代码中,dfs函数的参数分别表示当前搜索的节点坐标、已经访问过的节点、迷宫的二维数组。搜索过程中,我们先判断当前节点是否为出口,如果是,则返回True。然后标记当前节点已被访问,并搜索相邻节点,如果找到了一个相邻节点可以到达出口,则返回True。否则,返回False表示无法到达出口。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值