2021牛客暑期多校训练营2 - J - Product of GCDs ( 分解质因数 + 组合数 + 欧拉降幂 )

题目链接:点击进入
题目

在这里插入图片描述
在这里插入图片描述

题意

给一个集合,求所有大小为 k 的子集的 gcd 之积

思路

枚举所有 gcd ,对于每个当前枚举的 gcd = i,统计它的倍数出现的个数 num,i 的出现的倍数形成集合A。
gcd = i 且大小为 k 的子集都是 A 的子集,A 的大小为 k 的子集共 c ( num,k ) 个,但不都是所有子集的gcd 都等于 i , 还可能等于 i 的倍数。
所以我们在计算 gcd = i 且大小为 k 的子集的个数的时候还要去除 gcd =( i 的倍数 ) 的子集的影响。
这里可以采用从大到小枚举 gcd 的方法,对于每个 i ,用 sum 数组记录 gcd = i 的且长度为 k 的集合数目,每次枚举一个 i 后,都减去 gcd =( i 的倍数 )的集合的个数( 即 sum [ i 的倍数 ] ),即可得到gcd 为 i 的集合的个数。
最后的答案应该是 (ps:图片来源)
考虑到 k i k_i ki 可能很大,对此我们对它进行欧拉降幂:在这里插入图片描述
φ ( m ) \varphi(m) φ(m) 为 m 的欧拉函数值,这里 m 即 p ,考虑到 p 很大,我们用 pollard_rho 质因数分解得到 p 的所有因子再计算 p 的欧拉函数值( 题解说 std 暴力分解 p 也可以,不过可能会卡常 )。
同时由于最后统计答案多次用到组合数,可以预处理组合数,因为 φ ( m ) \varphi(m) φ(m) 不一定为质数,同时 k 不大,所以我们可以用杨辉三角 O(nk) 递推组合数。

代码
//#pragma GCC optimize(3)//O3
//#pragma GCC optimize(2)//O2
#include<iostream>
#include<string>
#include<map>
#include<set>
//#include<unordered_map>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<stack>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<fstream>
#define X first
#define Y second
#define best 131
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define lowbit(x) x & -x
#define inf 0x3f3f3f3f
//#define int long long
//#define double long double
//#define rep(i,x,y) for(register int i = x; i <= y;++i)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double pai=acos(-1.0);
const int maxn=1e5+10;
const int mod=998244353;
const double eps=1e-9;
const int N=5e3+10;
  
//inline int read()
//{
//    int k = 0, f = 1 ;
//    char c = getchar() ;
//    while(!isdigit(c)){if(c == '-') f = -1 ;c = getchar() ;}
//    while(isdigit(c)) k = (k << 1) + (k << 3) + c - 48 ,c = getchar() ;
//    return k * f ;
//}
 
const int S=8;//随计算法判定次数一般8-10次就够了
 
//计算 ret=(a*b)%c    a,b,c<2^63
ll mult_mod(ll a,ll b,ll c)
{
    a%=c;
    b%=c;
    ll ret=0;
    ll tmp=a;
    while(b)
    {
        if(b&1)
        {
            ret+=tmp;
            if(ret>c) ret-=c;//直接取模慢很多
        }
        tmp<<=1;
        if(tmp>c) tmp-=c;
        b>>=1;
    }
    return ret;
}
//计算ret=(a^n)%mod
ll pow_mod(ll a,ll n,ll mod)
{
    ll ret=1;
    ll temp=a%mod;
    while(n)
    {
        if(n&1) ret=mult_mod(ret,temp,mod);
        temp=mult_mod(temp,temp,mod);
        n>>=1;
    }
    return ret;
}
//通过a^n(n-1)=1(mod n)来判断 n 是不是素数
//n-1=x * 2^t 中间使用二次判断
//是合数返回true ,不一定是合数返回false
bool check(ll a,ll n,ll x,ll t)
{
    ll ret=pow_mod(a,x,n);
    ll last=ret;
    for(int i=1;i<=t;i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;
        last=ret;
    }
    if(ret!=1) return true;
    else return false;
}
// Miller_Rabin算法进行素数测试
//速度快可以判断一个 < 2^63 的数是不是素数
//是素数返回true,(可能是伪素数)
//不是素数返回false
bool Miller_Rabin(ll n)
{
    if(n<2) return false;
    if(n==2) return true;
    if((n&1)==0) return false;//偶数
    ll x=n-1;
    ll t=0;
    while((x&1)==0)
    {
        x>>=1;
        t++;
    }
    srand(time(NULL));
    for(int i=0;i<S;i++)
    {
        ll a=rand()%(n-1)+1;
        if(check(a,n,x,t)) return false;
    }
    return true;
}
// pollard_rho算法进行质因素分解
set<ll>factor;//质因数分解结果 (刚返回时是无序的)
//int tol;//质因数的个数 编号0~tol-1;
ll gcd(ll a,ll b)
{
    ll t;
    while(b)
    {
        t=a;
        a=b;
        b=t%b;
    }
    if(a>=0) return a;
    else return -a;
}
//找出一个因子
ll pollard_rho(ll x,ll c)
{
    ll j=1,k=2;
    srand(time(NULL));
    ll x0=rand()%(x-1)+1;
    ll y=x0;
    while(1)
    {
        j++;
        x0=(mult_mod(x0,x0,x)+c)%x;
        ll d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(j==k)
        {
            y=x0;
            k+=k;
        }
    }
}
//对n进行素因子分解,存入vector,k设置为107左右即可
void findfac(ll n,int k)
{
    if(n==1) return ;
    if(Miller_Rabin(n))
    {
        factor.insert(n);
        return ;
    }
    ll p=n;
    int c=k;
    while(p>=n) p=pollard_rho(p,c--);
    findfac(p,k);
    findfac(n/p,k);
}
 
int t,n,k,x;
int cnt[maxn];//记录 i 出现的次数
ll p;//模数,这里模数不一定为质数
ll c[40010][40];//组合数
ll sum[maxn];//记录 gcd 是 i 的且长度为 k 的集合数目
 
int main( )
{
    scanf("%d",&t);
    while(t--)
    {
        int maxx=0;
        scanf("%d%d%lld",&n,&k,&p);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&x);
            cnt[x]++;
            maxx=max(maxx,x);
        }
        //pollard_rho质因数分解得到 p 的因子数组factor
        factor.clear();
        findfac(p,107);
        ll phi=p,ans=1;
        for(auto x:factor)//得到p对应的欧拉函数值,即小于或等于 p 且与 p 互质的正整数个数
            phi=phi/x*(x-1);
        //组合数预处理(杨辉三角)
        for(int i=1;i<=n;i++)
        {
            c[i][0]=1;
            c[i][i]=1;
            for(int j=1;j<i&&j<=k;j++)
            {
                c[i][j]=c[i-1][j]+c[i-1][j-1];
                while(c[i][j]-phi>=phi) c[i][j]-=phi;
                //这里的组合数,在后面作为指数计入答案,可能会很大,要进行欧拉降幂 
            }
        }
        for(int i=maxx;i>=1;i--)//倒序便于消除 gcd是i的倍数的集合 对 gcd是i的集合 数目的影响 
        {
            int num=0;
            for(int j=i;j<=maxx;j+=i)
                num+=cnt[j];// i 的倍数的个数
            sum[i]=c[num][k];
            for(int j=i+i;j<=maxx;j+=i)
                sum[i]-=sum[j];//消除 gcd是i的倍数的集合 对 gcd是i的集合 数目的影响 
            //在后面作为指数计入答案,可能会很大,要进行欧拉降幂 
            while(sum[i]-phi>=phi) sum[i]-=phi;
            if(sum[i]<0)
                sum[i]=(sum[i]%phi+phi)%phi;
            ans=mult_mod(ans,pow_mod(i,sum[i],p),p);
        }
        printf("%lld\n",ans);
        for(int i=0;i<=maxx;i++) cnt[i]=sum[i]=0;
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值