2021牛客多校 Product of GCDs(拓展欧拉定理+欧拉函数)

题目传送门

大意

给一个数组,求数组中所有大小为k的子集的gcd的乘积。
样例:
5 2 20040220
2 4 8 12 14
这个就是从第二行找到k=2个数,(选出来,然后将这些组的gcd乘积求出来)
2-4:2
2-8:2
2-12:2
2-14:2
4-8:4
4-12:4
4-14:2
8-12:4
8-14:2
12-14:2
乘起来,然后对最后答案20040220取模
结果就是8192

思路

其实就是根据素数,来计算它对整体答案的贡献,来找它的倍数的大小,最后计算贡献:
比如现在给你一组数它的最小因子是 p p p,那么来讨论它的倍数 2 ∗ p , 3 ∗ p . . . . . . . 2*p,3*p....... 2p,3p.......,最后得出了m组与p相关的倍数,那么这组数对答案的贡献就是用组合数算出来的 C m k C_m^k Cmk因此,对答案的贡献是 p C m k p^{C_m^k} pCmk
但是这还不够,我们现在枚举了 p p p,但是对于那些有 p k p^k pk(k为正整数)的因子的元素来说,我们对于他们对最后的 g c d gcd gcd求小了,因此我们对这些 p p p的乘方都要进行上述运算。以此类推。

同时由于我们对答案的贡献可能会很大,因此要用欧拉降幂(这一点不用多说),那么我们在递推求组合数的过程中就可以进行欧拉定理的拓展了。

那么这个题就有一个非常容易超时的点就是:我们在求欧拉函数的时候,应该用素数进行枚举,而不是用普通的常数。

#pragma GCC optimize(2)
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=1e7+8;
int primes[N+8], cnt;
bool st[N+8];
ll c[40008][31];
int a[40005];
int ok[80005];
ll euler;
inline int read()
{
    int x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')
            f=-1;
        ch=getchar();
    }
    while(ch>='0' && ch<='9')
        x=x*10+ch-'0',ch=getchar();
    return x*f;
}
inline ll lread()
{
    ll x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')
            f=-1;
        ch=getchar();
    }
    while(ch>='0' && ch<='9')
        x=x*10+ch-'0',ch=getchar();
    return x*f;
}
/*void init_C(int n){
	for (int i = 0; i <= n; i ++ )
    for (int j = 0; j <= i; j ++ ){
    	if(j>=31)break;
    	if (!j) c[i][j] = 1;
        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]);
        if(c[i][j]>euler)c[i][j]%=euler,c[i][j]+=euler;
	}
    return;
}*/
void init_primes(){
	for (int i = 2; i <= N; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= N / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
    return;
}
ll phi(ll x){//求欧拉函数 
    __int128 res = x;
    for (ll i = 0; primes[i]<= x / primes[i]; i ++ )
        if (x % primes[i] == 0)
        {
            res = res / primes[i] * (primes[i] - 1);
            while (x % primes[i] == 0) x /= primes[i];
        }
    if (x > 1) res = res / x * (x - 1);
    return res;
}
ll qmi(ll m, ll k, ll p)
{
    __int128 res = 1 % p, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = (__int128)t * t % p;
        k >>= 1;
    }
    return res;
}

int main(){
    std::ios::sync_with_stdio(false);
    cin.tie(0); 
    cout.tie(0);
	init_primes();
	int T;
	//cin>>T;
    T=read();
	while(T--){
		int n,k;
		ll modd;
		//cin>>n>>k>>modd;
        n=read();
        k=read();
        modd=lread();
		memset(ok,0,sizeof ok);
        //for(int i=0;i<=80000;i++)ok[i]=0;
		int maxx=0;
		euler=phi(modd);
        //euler=1000000;
        //init_C(n);
        c[0][0]=1;
        for(int i=1;i<=n;i++){
            c[i][0]=1;
            for(int j=1;j<=min(i,k);j++){
                c[i][j]=c[i-1][j-1]+c[i-1][j];
                if(c[i][j]>=euler){
                    c[i][j]=c[i][j]%euler+euler;
                }
            }
        }
		for(int i=1;i<=n;i++){
			//cin>>a[i];
            a[i]=read();
			ok[a[i]]++;
			maxx=max(maxx,a[i]);
		}
		//cout<<c[5][2]<<" "<<c[3][2]<<endl;(__int128)
		ll ans=1;
		for(int i=0;primes[i]<=maxx;i++){
			for(ll j=primes[i];j<=maxx;j*=primes[i]){
				int s=0;
				for(ll _p=j;_p<=maxx;_p+=j)s+=ok[_p];
				if(s<k)break;
				ans=(__int128)ans*qmi(primes[i],c[s][k],modd)%modd;

			}
		}
		cout<<ans<<endl;
	} 
}
  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值