2021牛客暑期多校训练营2 J Product of GCDs

2021牛客暑期多校训练营2

J Product of GCDs

题目链接

题意

给定一个集合S,在S中找出元素个数为k的子集合T,计算T中所有元素的GCD(最大公约数),将所有的T得到的GCD乘在一起得到结果,结果对P取模。

思路

计算每一个可能的GCDg对最终答案的贡献。

考虑元素个数为k且GCD为g的子集合TT里面的所有元素 T i T_i Ti一定都是g的倍数。

注意 如果 T i T_i Ti g × x ( x > 1 ) g \times x(x>1) g×x(x>1)的倍数,那么GCD的值就是 g × x g\times x g×x

定义一个变量tmp = 0tmp加上Sg的倍数的个数,然后tmp减去 g × x g\times x g×x​的倍数的个数(容斥),则满足该条件的T的个数为 C t m p k C^k_{tmp} Ctmpk​。

那么g对结果的贡献就是 g C t m p k g^{C^k_{tmp}} gCtmpk​,g的幂很大,要用到欧拉降幂

这个时间卡的很紧

  • 不用快读会炸。
  • 取模时有可能也会炸,一些地方要换成while(x - mod >= mod) x -= mod。

AC的代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long

const int inf = 0x3f3f3f3f;
const int N = 1e5 + 10;

inline ll read() {
	ll s = 0;
	char ch = getchar();
	while (ch < 48 || ch>57)ch = getchar();
	while (ch > 47 && ch < 58)s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar();
	return s;
}

ll n, k, p, phi_p, res;
ll factor[100], total = 0;// 计算p的约数
ll dp[N], cnt[N], c[N][32];
//===============================================================板子 
// 快速乘 
ll mul(ll a, ll b, ll mod) {
	return ((a * b - (long long)((long long)((long double)a / mod * b + 1e-3) * mod)) % mod + mod) % mod;
}
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
// 快速幂
ll power(ll a, ll b, ll c) {
	ll res = 1;
	while (b) {
		if (b & 1) {
			res = mul(res, a, c);
		}
		b >>= 1;
		a = mul(a, a, c);
	}
	return res % c;
}
int a[] = { 2, 3, 5, 7, 11 };
// 判断一个数是否为质数
bool miller_rabin(ll n) {
	if (n == 1) return 0;
	for (int i = 0; i < 5; ++i) {
		if (n == a[i]) return 1;
		if (!(n % a[i])) return 0;
	}
	ll d = n - 1;
	while (!(d & 1)) d >>= 1;
	for (int i = 1; i <= 5; ++i) {
		ll a = rand() % (n - 2) + 2;
		bool tmp_k = false;
		ll tmp_d = d;
		ll tmp = power(a, tmp_d, n);
		if (tmp == 1)	tmp_k = true;
		// 先把所有的2给提出来,然后在一个一个乘上去,这样比直接做快
		while (tmp != 1 && tmp != n - 1 && tmp_d != n - 1) {
			tmp = mul(tmp, tmp, n);
			tmp_d <<= 1;
		}// 二次探测
		if (tmp == n - 1)	tmp_k = true;

		if (!tmp_k)
			return 0;
	}
	return 1;
}
// 找出n的一个因数
const int M = (1 << 7) - 1;// 一个玄学值
ll pollard_rho(ll n) {
	for (int i = 0; i < 5; ++i) if (n % a[i] == 0) return a[i];
	ll x = rand(), y = x, t = 1, a = rand() % (n - 2) + 2;
	for (int k = 2; ; k <<= 1, y = x) {
		ll q = 1;
		// k用于倍增
		for (int i = 1; i <= k; ++i) {
			x = (mul(x, x, n) + a) % n;// f(x) = x^2+a
			q = mul(q, abs(x - y), n);// 每一次的|x-y|累加
			// 如果次数超过M
			if (!(i & M)) {
				t = gcd(q, n);
				if (t > 1) break;
			}
		}
		if (t > 1 || (t = gcd(q, n)) > 1) break;
	}
	return t;
}
// 找出x的所有因数
void find(ll x) {
	if (x == 1 || x <= 0) return;
	if (miller_rabin(x)) {
		factor[++total] = x;
		return;
	}
	ll p = x;
	while (p == x) p = pollard_rho(x);
	while (x % p == 0) x /= p;
	find(p);// 递归遍历所有的因数
	find(x);
}
// 组合数
ll C(ll n, ll k) {
	if (n < k)return 0;
	return c[n][k];
}
//===============================================================

int main() {
	int t = read();
	while (t--) {
		memset(cnt, 0, sizeof cnt);
		// ==============================================================输入
		n = read(); k = read(); p = read();
		ll maxn = -inf;// 数组中最大值
		for (int i = 1; i <= n; i++) {
			ll tmp = read();
			cnt[tmp]++;
			maxn = max(maxn, tmp);
		}
		// ==============================================================计算phi
		res = 1;
		total = 0;
		find(p);// 寻找p的约数
		phi_p = p;// 计算phi(p)
		for (int i = 1; i <= total; i++) {
			phi_p = phi_p / factor[i] * (factor[i] - 1);
		}
		// ==============================================================组合数
		c[0][0] = 1;
		for (int i = 1; i <= n; i++) {
			c[i][0] = 1;
			if (i <= 31)	c[i][i] = 1;
			// k的值不会超过30,不需要计算更多位
			for (int j = 1; j < i && j <= 31; j++) {
				c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]);// 组合数的递推公式
				while (c[i][j] - phi_p >= phi_p) c[i][j] -= phi_p;
			}

		}
		// ==============================================================计算答案
		// 计算每个i对答案的贡献
		for (int i = maxn; i >= 1; i--) {
			int tmp = 0;// i的倍数
			for (int j = i; j <= maxn; j += i) {
				tmp += cnt[j];
			}
			dp[i] = C(tmp, k);
			for (int j = i + i; j <= maxn; j += i) {
				dp[i] -= dp[j];// 容斥
			}
			dp[i] = dp[i] % phi_p;
			if (dp[i] < 0)
				dp[i] = (dp[i] % phi_p + phi_p) % phi_p;
			res = mul(res, power(i, dp[i], p), p);

		}
		printf("%lld\n", res);
	}
	return 0;
}

一些要用到的板子

快速乘
ll mul(ll a, ll b, ll mod) {
	return ((a * b - (long long)((long long)((long double)a / mod * b + 1e-3) * mod)) % mod + mod) % mod;
}
快速幂
ll power(ll a, ll b, ll c) {
	ll res = 1;
	while (b) {
		if (b & 1) {
			res = mul(res, a, c);
		}
		b >>= 1;
		a = mul(a, a, c);
	}
	return res % c;
}
miller_rabin-快速判断一个数是否为质数
int a[] = { 2, 3, 5, 7, 11 };
bool miller_rabin(ll n) {
	if (n == 1) return 0;
	for (int i = 0; i < 5; ++i) {
		if (n == a[i]) return 1;
		if (!(n % a[i])) return 0;
	}
	ll d = n - 1;
	while (!(d & 1)) d >>= 1;
	for (int i = 1; i <= 5; ++i) {
		ll a = rand() % (n - 2) + 2;
		bool tmp_k = false;
		ll tmp_d = d;
		ll tmp = power(a, tmp_d, n);
		if (tmp == 1)	tmp_k = true;
		// 先把所有的2给提出来,然后在一个一个乘上去,这样比直接做快
		while (tmp != 1 && tmp != n - 1 && tmp_d != n - 1) {
			tmp = mul(tmp, tmp, n);
			tmp_d <<= 1;
		}// 二次探测
		if (tmp == n - 1)	tmp_k = true;

		if (!tmp_k)
			return 0;
	}
	return 1;
}
pollard_rho-找出一个数的一个因数
// 找出n的一个因数
int a[] = { 2, 3, 5, 7, 11 };
const int M = (1 << 7) - 1;// 一个玄学值
ll pollard_rho(ll n) {
	for (int i = 0; i < 5; ++i) if (n % a[i] == 0) return a[i];
	ll x = rand(), y = x, t = 1, a = rand() % (n - 2) + 2;
	for (int k = 2; ; k <<= 1, y = x) {
		ll q = 1;
		// k用于倍增
		for (int i = 1; i <= k; ++i) {
			x = (mul(x, x, n) + a) % n;// f(x) = x^2+a
			q = mul(q, abs(x - y), n);// 每一次的|x-y|累加
			// 如果次数超过M
			if (!(i & M)) {
				t = gcd(q, n);
				if (t > 1) break;
			}
		}
		if (t > 1 || (t = gcd(q, n)) > 1) break;
	}
	return t;
}
// 找出x的所有因数
void find(ll x) {
	if (x == 1 || x <= 0) return;
	if (miller_rabin(x)) {
		factor[++total] = x;
		return;
	}
	ll p = x;
	while (p == x) p = pollard_rho(x);
	while (x % p == 0) x /= p;
	find(p);// 递归遍历所有的因数
	find(x);
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值