目录
问题描述:
给你一个整数数组 nums
,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
示例 1:
输入:nums = [-10,-3,0,5,9] 输出:[0,-3,9,-10,null,5] 解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
示例 2:
输入:nums = [1,3] 输出:[3,1] 解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
实现代码与解析:
递归:
class Solution {
public:
TreeNode* traversal(vector<int>& nums,int left,int right)
{
if(left>right) return NULL;
int mid=(left+right)/2;//中间值
TreeNode* newNode=new TreeNode(nums[mid]);
newNode->left=traversal(nums,left,mid-1);
newNode->right=traversal(nums,mid+1,right);
return newNode;
}
TreeNode* sortedArrayToBST(vector<int>& nums)
{
TreeNode* root=traversal(nums,0,nums.size()-1);
return root;
}
};
原理思路:
这里构建的是平衡二叉搜索树,也是很好写的,如何保持平衡呢?很简单,就是不断取中间值来构建结点即可,没什么可讲解的,注意这里区间用的是左闭右闭就行,当然左闭右开也可以。