问题描述:
给你一个二进制字符串数组 strs
和两个整数 m
和 n
。
请你找出并返回 strs
的最大子集的长度,该子集中 最多 有 m
个 0
和 n
个 1
。
如果 x
的所有元素也是 y
的元素,集合 x
是集合 y
的 子集 。
示例 1:
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3 输出:4 解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
示例 2:
输入:strs = ["10", "0", "1"], m = 1, n = 1 输出:2 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。
实现代码与解析:
动态规划(01背包):
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n)
{
//二维背包
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));//构建dp数组
dp[0][0] = 0;//初始化,显然为0,可以不写,构建的时候就有了
// 遍历字符串
for(string s : strs)
{
int x = 0; int y = 0;//获取0,1的个数
for(char c : s)
{
if(c == '0') x++;
else y++;
}
//01二维背包遍历
for(int i = m; i >= x; i--)
{
for(int j = n; j >= y; j--)
{
dp[i][j] = max(dp[i][j], dp[i - x][j - y] + 1);
}
}
}
return dp[m][n];
}
};
原理思路:
与一般 01 背包问题不同的是,根据题意,此题的背包维度是二维的,我们不仅要同时考虑 0,1的个数,再加上物品的话,这题就成三维了,为了方便写,我们就直接写优化后的代码了。
先说一下dp数组的含义吧,就是再容量为 i , j 的二维背包大小中,获取可以装的物品最大个数,所以这里的个数,就为 01 背包问题中的物品价值,一个物品的价值就为 1(1个)。
首先还是遍历物品,也就是这里的字符串,因为我们这里物品的重量(体积)有两个,一个 0的个数,一个 1 的个数,我们需要循环遍历出来求得。然后就是遍历二维背包了,与一般的 01 背包代码相识,只是多了一个维度而已,大家可以对照着看。
dp[i][j] = max(dp[i][j], dp[i - x][j - y] + 1);
可能这里有人疑惑为什么是+1而不是 + 物品价值,这里我们要求的是能装的物品个数,dp数组的含义也是求最大物品个数,上面其实也解释了,物品价值就是 1(1 个物品)。
如果对于 01 背包不熟悉,可以看看我前面的文章。