各种各样的分布函数-t分布,F分布

t-分布

X X X~ N ( 0 , 1 ) N(0,1) N(0,1), Y Y Y ~ χ 2 ( n ) \chi^2(n) χ2(n),且 X X X Y Y Y相互独立,则称随机变量 T = X Y / n T=\frac{X}{\sqrt{Y/n}} T=Y/n X服从的分布是自由度为 n n n t t t分布,记为 T T T~ t ( n ) t(n) t(n)

t ( n ) t(n) t(n)的概率密度函数 f ( t ) = Γ ( n + 1 2 ) n π Γ ( n 2 ) ( 1 + t 2 n ) − n + 1 2 f(t)=\frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac n2)}(1+\frac{t^2}{n})^{-\frac{n+1}{2}} f(t)=nπ Γ(2n)Γ(2n+1)(1+nt2)2n+1

感觉证明起来非常麻烦,不想学习了…

性质

(1) 设 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)是来自总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的一个样本,则有 ( X ˉ − μ ) n S \frac{(\bar X-\mu)\sqrt n}{S} S(Xˉμ)n ~ t ( n − 1 ) t(n-1) t(n1)

证明:
X ˉ \bar X Xˉ~ N ( μ , σ n ) ⇒ X ˉ − μ σ n N(\mu,\frac{\sigma}{n})\Rightarrow \frac{\bar X-\mu}{\frac {\sigma}{\sqrt n}} N(μ,nσ)n σXˉμ~ N ( 0 , 1 ) N(0,1) N(0,1)

( n − 1 ) S 2 σ 2 \frac{(n-1)S^2}{\sigma^2} σ2(n1)S2~ χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1)

然后我们知道这两个是相互独立的, T = X Y / ( n − 1 ) = ( X ˉ − μ ) n S T = \frac{X}{\sqrt{Y/(n-1)}}= \frac{(\bar X-\mu)\sqrt n}{S} T=Y/(n1) X=S(Xˉμ)n

(2) 设 ( X 1 , X 2 , . . . , X m ) , ( Y 1 , Y 2 , . . . , Y n ) (X_1,X_2,...,X_m),(Y_1,Y_2,...,Y_n) (X1,X2,...,Xm),(Y1,Y2,...,Yn)是来自总体 N ( μ 1 , σ 2 ) , N ( μ 2 , σ 2 ) , N(\mu_1,\sigma^2),N(\mu_2,\sigma^2), N(μ1,σ2),N(μ2,σ2),的样本

T = ( X ˉ − Y ˉ − ( μ 1 − μ 2 ) ) ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 ⋅ m n ( m + n − 2 ) m + n T =\frac{(\bar X - \bar Y - (\mu_1-\mu_2))}{\sqrt{(m-1)S_1^2+(n-1)S_2^2}}\centerdot\sqrt{\frac{mn(m+n-2)}{m+n}} T=(m1)S12+(n1)S22 (XˉYˉ(μ1μ2))m+nmn(m+n2) ~ t ( m + n − 2 ) t(m+n-2) t(m+n2)

证明:
容易得到 ( m − 1 ) S 1 2 σ 2 \frac{(m-1)S_1^2}{\sigma^2} σ2(m1)S12~ χ 2 ( m − 1 ) \chi^2(m-1) χ2(m1), ( n − 1 ) S 2 σ 2 2 \frac{(n-1)S^2}{\sigma_2^2} σ22(n1)S2~ χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1)

所以 ( m − 1 ) S 1 2 + ( m − 1 ) S 2 σ 2 \frac{(m-1)S_1^2+(m-1)S^2}{\sigma^2} σ2(m1)S12+(m1)S2~ χ 2 ( m + n − 2 ) \chi^2(m+n-2) χ2(m+n2)

X ˉ − Y ˉ \bar X-\bar Y XˉYˉ~ N ( μ 1 + μ 2 , σ 2 n + σ 2 m ) N(\mu_1+\mu_2,\frac{\sigma^2}{n}+\frac{\sigma^2}{m}) N(μ1+μ2,nσ2+mσ2)

标准化有 X ˉ − Y ˉ − ( μ 1 − μ 2 ) σ m + n m n \frac{\bar X-\bar Y-(\mu_1-\mu_2)}{\frac {\sigma\sqrt{m+n}}{\sqrt{mn}}} mn σm+n XˉYˉ(μ1μ2)~ N ( 0 , 1 ) N(0,1) N(0,1)

按照定义 T = X Y / n ⇒ T = X ˉ − Y ˉ − ( μ 1 − μ 2 ) ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 ⋅ m n ( m + n − 2 ) m + n T=\frac{X}{\sqrt{Y/n}}\Rightarrow T=\frac{\bar X-\bar Y-(\mu_1-\mu_2)}{\sqrt{(m-1)S_1^2+(n-1)S_2^2}}\centerdot\sqrt{\frac{mn(m+n-2)}{m+n}} T=Y/n XT=(m1)S12+(n1)S22 XˉYˉ(μ1μ2)m+nmn(m+n2)

F-分布

设随机变量 X , Y X,Y X,Y是自由度分别为 n 1 , n 2 n_1,n_2 n1,n2的相互独立的 χ 2 \chi^2 χ2分布的随机变量

F = X / n 1 Y / n 2 F=\frac{X/n_1}{Y/n_2} F=Y/n2X/n1服从的是自由度为 ( n 1 , n 2 ) (n_1,n_2) (n1,n2) F F F分布,记为 F F F~ F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2), n 1 n_1 n1第一自由度, n 2 n_2 n2第二自由度

概率密度函数过于复杂,不想打了…

性质

(1) X X X~ F ( n 1 , n 2 ) ⇒ F(n_1,n_2)\Rightarrow F(n1,n2) 1 / X 1/X 1/X~ F ( n 2 , n 1 ) F(n_2,n_1) F(n2,n1)

(2) X X X~ t ( n ) ⇒ t(n)\Rightarrow t(n) X 2 X^2 X2~ F ( 1 , n ) F(1,n) F(1,n)

T = X Y / n ⇒ T 2 = X 2 Y / n , X 2 T = \frac{X}{\sqrt{Y/n}}\Rightarrow T^2 =\frac{X^2}{Y/n},X^2 T=Y/n XT2=Y/nX2,X2服从自由度为1的 χ 2 \chi^2 χ2分布

(3) 设 ( X 1 , X 2 , . . . , X m ) , ( Y 1 , Y 2 , . . . , Y n ) (X_1,X_2,...,X_m),(Y_1,Y_2,...,Y_n) (X1,X2,...,Xm),(Y1,Y2,...,Yn)是来自总体 N ( μ 1 , σ 1 2 ) , N ( μ 2 , σ 2 2 ) , N(\mu_1,\sigma_1^2),N(\mu_2,\sigma_2^2), N(μ1,σ12),N(μ2,σ22),的样本

F = S 1 2 σ 2 2 S 2 2 σ 1 2 F=\frac{S_1^2\sigma_2^2}{S_2^2\sigma_1^2} F=S22σ12S12σ22 ~ F ( n 1 − 1 , n 2 − 1 ) F(n_1-1,n_2-1) F(n11,n21)

( n − 1 ) S 2 σ 2 \frac{(n-1)S^2}{\sigma^2} σ2(n1)S2~ χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1),然后套一下定义就可以证明了

(4) 设随机变量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn相互独立且服从 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2)

Σ i = 1 k Q i = Σ i = 1 n X i \Sigma_{i=1}^kQ_i=\Sigma_{i=1}^nX_i Σi=1kQi=Σi=1nXi, Q i Q_i Qi为秩为 n j n_j nj ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)的非负定二次型

Σ i = 1 k n i = n \Sigma_{i=1}^kn_i=n Σi=1kni=n,且 Q i Q_i Qi相互独立,有 F i j = Q i / n i Q j / n j F_{ij}=\frac{Q_i/n_i}{Q_j/n_j} Fij=Qj/njQi/ni~ F ( n i , n j ) F(n_i,n_j) F(ni,nj)

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值