- 博客(94)
- 收藏
- 关注
原创 切比雪夫不等式,大数定律及极限定理。
用频率估算概率这件事是靠谱的。(即当试验总够大,频率 依概率收敛 于它的概率)(用夹逼+切比雪夫不等式证明)②基于“频率 依概率收敛于 概率”的可靠性,得出“切比雪夫大数定律”及其推论。(即当Xi互不相关,EXi DXi 存在且DXi有界,∀ε >0有X均值 依概率收敛 于数学期望的均值)(推论:即Xi相互独立,Exi = u,DXi = σ2,∀ε >0有X均值 依概率收敛 于数学期望u)(用夹逼+切比雪夫不等式证)③基于"切比雪夫大数定律推论"弱化其条件,得到辛钦大数定律。
2023-05-22 20:27:10
15782
6
原创 随机变量X,分布函数X~F(x)的理解。
设随机试验 E 的样本空间 Ω = { ω } ,如果对于每一个 事件ω ∈ Ω,都有唯一的实数 x ∈ R 与之对应。并且 对于 ∀x ∈ R ,有 {ω | X <= x, ω ∈ Ω}是随机事件,则称定义在 Ω 上的实值单值函数 X(ω) 为随机变量,记 X“定义在样本空间 Ω 上,而取决于实数轴的函数”叫随机变量。设 X 是一个随机变量,称函数, 为随机变量X 的分布函数,或称 X 服从F(X) 分布,记 X ~ F(x)。①X 的分布函数分布,即概率。
2023-05-13 08:48:31
6424
2
原创 各种硬件对应”位数“,各种字长,编址方式的区分。
## ①存储元,存储单元,存储体/存储矩阵,存储器/存储系统。**①存储元**:能够完成一个二进制读写的叫做存储元。**②存储单元**:每行/列(具体这行/列有多少个存储元要看编制方式)存储元叫做一个存储单元,也叫存储字/存储字长。**③存储体/存储矩阵**:所有的存储单元组成的叫做存储体或存储矩阵。**④存储器**:由存储体、地址译码器和控制电路组成。**⑤存储系统**:存储系统是指计算机中由存放程序和数据的各种存储设备、控制部件及管理信息调度的设备(硬件)和算法(软件)所组成的系统。
2023-03-27 18:49:17
3216
1
原创 Cache的地址结构,tag到底与Cache什么关系,Cache容量与总容量,Cache行长,Cache字地址?
重点:这里我说,之前一直以为“标记项tag=各种位+标记位”属于Cache地址结构的一部分,而Cache是没有行号的(受直接映射的影响,以为行号隐含了不需要占位了。)导致一直不理解,为何**Cache字地址位数=块号占位+块内地址占位。**而不是Cache字地址位数="各种位+标记位"+块内地址位数。(因为我之前一直认块号隐含了,tag属于Cache地址结构一部分。)而又为何**Cache容量=块大小x块数**而不是Cache容量=(各种位+标记位+数据项位数)x块数
2023-03-21 18:04:38
21992
41
原创 一元导数与多元求导数总结
③隐函数求导方法一:可以两边同时对x求导,然后表示为dy/dx=......的形式即可方法二:可以利用多元函数中的公式如下。方法三:一元微分形式不变性。
2023-03-07 19:33:05
5951
1
原创 三重积分为何不能直接带入积分区域?搞懂这些,重积分基本可以了
错误2:二三重积分的区域都是一个范围,且在该范围不同地方被积表达式式变化的(也就是说被积表达式是一个变量),等式带入,相当于将被积表达式钉死在范围边界成立的地方,即无论在范围哪个地方,都是边界成立时的被积表达式。转换之后不能带入:高斯公式之后,积分区域由曲面变成曲面所围成的空间,这时候,这无数个点不仅仅时曲面上等式成立的点,还包含曲面所围成的空间里面等式不成立的点,故不能带入。转换之前可以带入:因为对曲面积分,积分区域时曲面,曲面是由无数个点组成的,这无数个点在曲面表达式都是成立的,故可以直接带入。
2023-03-01 11:04:32
9395
8
原创 VS2019报错写入/读入访问权限冲突
VS2019报错写入/读入访问权限冲突如下图:当我们在使用指针的时候,会出现写入或者读入权限冲突的情况情景一:写入访问权限冲突解决方案:在使用指针的时候,最好是对其进行初始化,哪怕是将指针指向空也可以;情景二:读入访问权限冲突在添加链表数据的时候没有将最后一个链表的next域置空当我们利用辅助指针remove遍历这个链表的时候会出现读入访问权限冲突解决方案:就是将链表最后一个元素置空,也就是对链表的最后一个节点的next进行初始化,初始化的值为空;***以上问题解析:拿上面的图
2021-05-12 10:02:22
15313
2
原创 数据结构大作业--迷宫问题
数据结构大作业–迷宫问题上图:代码有详细注解迷宫自动生成问题单独讨论当然由于出口随机的原因右小概率会出现bug(这无伤大雅)首先我们都知道,迷宫只有一条正确的道路。这个时候请把自己想象成一只地鼠,要在这个区域不停的挖,直到任何一块区域再挖就会挖穿了为止。我们挖的道路就像树结构,树上有很多的分支,分支也有子分支,每个子分支都不能相交,相交了就说明墙被挖穿了,那么此时的迷宫就可能存在多条正确道路,这不是我们想看到的。那么基于唯一道路的原则,我们向某个方向挖一块新的区域时,要先判断新区
2021-05-04 14:50:29
3161
1
原创 C++大作业
标题C++大作业你还烦恼吗?图书管理系统让你得到老师欣慰的目光…C++图书管理系统1.图书信息类2.安全类。3.菜单类#include <iostream>#include"Book_Manage.h"#include"Safe_Mange.h"#include"Menu_Manage.h"using namespace std;/** * 我在主函数,声明了三个全局变量的类的类型; * 以便于以后的调用; */Book_Manage_Function BMF;
2020-12-24 19:25:50
4571
5
原创 这城有良田18僚属搭建演示
本文详细介绍了在CentOS 7.6系统中部署游戏服务端的完整流程。主要内容包括:1)通过宝塔面板安装Nginx 1.20、MySQL 5.7、PHP 7.2(含Redis扩展)等运行环境;2)配置Redis端口为23450,设置MySQL密码并关闭二进制日志;3)上传并解压服务端文件,修改SQL中的IP地址,导入数据库;4)启动游戏服务,介绍安卓/iOS客户端IP修改方法;5)提供GM后台、玩家后台等访问接口信息。教程强调所有操作均在单机环境下进行,仅供学习研究使用。
2025-11-06 13:55:34
747
原创 关于研0找兼职的坑、兼职时间段三班四倒什么意思、签订合同类型、五险一金以及建议。
关于研0找兼职的坑、兼职时间段三班四倒什么意思、签订合同类型、五险一金以及建议。
2025-05-30 19:01:18
1065
原创 选新手机的参考:CPU型号、内存、外存、屏幕、摄像头以及电池等。
手机的核心组成包括硬件和软件两部分。硬件部分主要包括处理器(CPU)、存储器(RAM和ROM)、显示屏、摄像头、电池等,这些部件共同决定了手机的性能和用户体验。软件部分则包括操作系统和应用程序,操作系统管理硬件资源,应用程序提供各种功能和服务。影响手机性能的主要因素有处理器性能、内存和存储空间。选择手机时,需考虑屏幕材质、分辨率、刷新率、摄像头性能、电池容量、充电功率、运行内存、机身存储、闪存类型、后盖材质、中框材质、GPS、防水等级、红外遥控和NFC等功能。不同用户群体(如日常用户、拍照爱好者和游戏玩家)
2025-05-22 21:36:11
2741
原创 计算机启动流程中,都干了啥事。比如文件挂在,操作系统加载,中断向量表加载,磁盘初始化在哪阶段。
开机上电 → BIOS阶段(初始化IVT) → 加载MBR → 执行MBR引导代码 → 跳转至活动分区的PBR → 加载操作系统内核(挂载文件系统) → 系统启动完成
2025-05-02 21:19:51
899
1
原创 f(x)可积的三个充分一个必要
三个充分:①若f(x)在[a,b]上连续,则 定积分(图片所示) 必定存在。②若f(x)在[a,b]上有界,且只有有限个间断点,则上述定积分(图片)必存在。③若f(x)在[a,b]上只有有限个第一类的间断点,则上述定积分(图片)必存在。④若f(x)在[a,b]上单调,则定积分存在。必要条件:若定积分(图片)存在则 f(x)在[a,b]上必有界。注:有上述可知,有界条件比闭区间连续弱。所以f(x)闭区间连续=>f(x)有界。
2023-06-07 17:32:16
3747
原创 平衡二叉树的插入,删除以及平衡调整。
先左旋后右旋:先让A的左孩子B的右子树的根节点C左上旋提升到B位置,在让C右上旋提升到A位置。先右旋后左旋:先让A的右孩子B的左子树的根节点C右上旋提升到B位置,在让C左上旋提升到A位置。由于各种的插入导致的不平衡,每次调整都是最小不平衡子树。LL:由于在结点A的。RR:由于在结点A的。LR:由于在结点A的。RL:由于在结点A的。
2023-05-27 10:28:08
2290
原创 红黑树的插入。
①每个结点或是红色,或是黑色。②根结点是黑色的。③叶结点(虚构的外部节点NULL结点)都是黑色的。④不存在两个相邻的红结点。⑤对每个结点,从该结点到任一结点的简单路径上,所含黑节点数一样。
2023-05-27 09:51:31
311
原创 查找判定树(顺序查找与折半查找)
注2:如果有偶数各元素,则mid分割,左半比右半少一个元素。注1:如果有奇数各元素,则mid分隔,左右两部分相等。
2023-05-26 21:34:33
2833
3
原创 图的拓扑排序AOV网,有向无环图DAG描述表达式,关键路径AOE网。
①Ve(k) : 事件Vk的最早发生时间。②Vl(k) : 事件Vk的最迟发生时间。③e(i) : 活动ai的最早开始时间。④l(i) : 活动ai的最迟开始时间。⑤d(i):余量 d(i) = l(i) - e(i)。注:d(i) = 0的路径,即为关键路径。
2023-05-24 09:27:17
918
原创 遍历序列构造二叉树,手算。
注:必须含有中序有前序与中序遍历特性知,前序第一个必为根节点。再有中序借助这个根节点,将遍历序列一分为二,如此下去。注:记得验证,遍历这个二叉树得到前序,中序是否与原来相等。
2023-05-10 19:26:16
192
原创 模式串匹配算法(朴素模式匹配与KMP)的机算与手算。
其实就是暴力匹配。使用双指针 i (指向主串) j (指向模式串)从主串 S 第一字符起,与模式串 T, 第一个字符比较,①若相同,则 i 与 j 统一向后移②若遇到 i 与 j 指向字符不同,回溯 i j 指针。继续如此,直至匹配成功j超出模式串,或者 匹配失败 i 超出主串。
2023-05-09 20:39:20
664
原创 栈在表达式中的应用(中/后前缀的转换)机算,手算模拟。
初始化一个栈,用于保存从 左往右 依次扫描,会遇到三种情况:1.遇到,直接加入后缀表达。2.遇到①遇到 “(” 入栈。②遇到 “)” 依次弹出栈内运算符并加入后缀表达式,直到弹出 "("为止。(注: “(” 不加入后缀表达式)3.遇到依次弹出栈中优先级 高于或等于 当前运算符的所有运算符,并且加入后缀表达式中,直到碰到 “(” 或者 栈空为止。注:处理完所有字符后,将栈中剩下的运算符依次弹出,并加入后缀表达式。
2023-05-08 21:31:09
654
原创 极值点与拐点的存在条件。
① 我们无需考虑 f ’ (X0) 与 f ‘’ (X0) 是否存在,以及f(x)在 X0 是否连续,只需要看 f ’ (X0) f ‘’ (X0) 左右极限是否异号即可,判断是否属于极值点或拐点。②若 f(x) 在 x = X0 不可导,则x = X0 与 ( X0 , f(X0) )可以同时是极值点与拐点。③若 f(x) 在 x = X0 可导,则若 ( X0 , f(X0) ) 是拐点,则必不为极值点。①f ‘‘ (X0) 不存在的点。①f ‘ (X0) 不存在的点。
2023-05-07 20:45:20
3222
原创 定积分比较大小的常用手段。
①区间对称,利用被积函数奇偶性②放缩(利用常用不等式,结论等)③将 1 转换成定积分④直接算⑤“拆区间,变量代换改区间再合并”
2023-05-07 20:10:30
6453
原创 拉格朗日中值定理求极限什么时候适用。
形如:lim ( f[r(x)] - f[g(x)] ) / g = lim f ’ (ζ) (r(x) - g(x) )/g①若r(x) - g(x) 与 g 同阶,则可以用。②若r(x) - g(x) 是低阶 , 且 r(x) ~ g(x) 则 可用。③若r(x) - g(x) 是低阶 , 且 r(x) 不等价与 g(x) 则不可以用。
2023-05-05 11:32:49
5516
4
原创 f(x)与|f(x)|,f ‘ (x),F(x)常见关系。
(f(x)在"[a,b]上连续" => |f(x)|在"[a,b]连续")①如果f(x)在[a,b]上连续。则|f(x)|在[a,b]上连续. ((f(x)可积 => |f(x)|可积)证明略。反例:f(x)有无限个间断点,f(x)不可积。但是|f(x)|可积。①f(x)在x0可导,则当f(x0) ≠ 0时f(x)可导 |f(x)|可导②f(x)在x0可导,则当f(x0) = 0时,有两种情况。
2023-05-03 17:32:48
7704
原创 幂级数及其收敛准则,展开式,和函数。
一.幂级数的基本概念二.幂级数的性质1.加减乘除性质。2.三大分析性质。三.函数的幂级数展开。1.基本概念2.常用七个麦克劳林级数。四.幂级数展开的两种方式五.和函数
2023-04-11 20:23:04
1231
考研数学高频题型与知识框架整理:2025年数学一/二/三通用复习笔记及错题解析合集
2025-09-07
【教育资源共享】夸克网盘群汇总:四六级教资考研法考等电子版资料免费提取
2025-09-07
基于SpringBboot+Uniapp的微信商城小程序毕业设计+论文+数据库+前后端分离
2025-05-07
基于springboot的智能博物馆管理系统的设计与实现+论文+数据库+源码+开发文档+其他
2025-05-07
java编辑器IDEA详细安装教程
2025-05-05
红色警戒手机版+网页游玩
2025-05-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅