死嗑 最长公共子序列(LCS)

【模板】最大公共子序列

在这里插入图片描述
半分做法(传统LCS)

#include<bits/stdc++.h>
using namespace std;

const int N=1e3+10; //不能写 1e5+10,因为 dp数组相乘 1e9会爆栈,但也因此得不了满分
int dp[N][N],a[N],b[N];

int main()
{
	int n;cin>>n;
	for(int i=1;i<=n;i++) cin>>a[i];
	for(int i=1;i<=n;i++) cin>>b[i];
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
			if(a[i]==b[j])
				dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
		}
	cout<<dp[n][n]<<endl;
	return 0;
}

满分做法(改进LIS)

#include<bits/stdc++.h>
using namespace std;

const int N=1e5+10;
int a[N],b[N],mmp[N],f[N];

int main()
{
	int n;cin>>n;
	for(int i=1;i<=n;i++) cin>>a[i];
	for(int i=1;i<=n;i++) cin>>b[i];
	for(int i=1;i<=n;i++) mmp[a[i]]=i;
	/* 
	for(int i=1;i<=n;i++) {
		cout<<"a: "<<mmp[a[i]]<<' '<<"b: "<<mmp[b[i]]<<endl;
	}
	*/ 
	int len=1;f[1]=mmp[b[1]];
	for(int i=2;i<=n;i++)
	{
		if(f[len]<mmp[b[i]]) f[++len]=mmp[b[i]];
		else
		{
			int tmp=lower_bound(f+1,f+1+len,mmp[b[i]])-f;
			f[tmp]=mmp[b[i]];
		}
	}
	/* 
	for(int i=1;i<=len;i++) cout<<f[i]<<' ';
	*/ 
	cout<<len<<endl;
	return 0;
}

思路
一、传统做法(LCS)
在这里插入图片描述
二、满分做法(改进LIS)
这种方法比较抽象,举个例子

a = 2 5 4 3 1
b = 1 2 4 5 3

只要在数列 a 中重新定义 “大小” 关系
让 4 < 3 ( 43 前面 ), 5 < 3 ( 53 前面 ) 即可

定义一个数组 mmp, mmp[] = i 括号中放入数组 a[] b[]
将 LIS 算法中的 i < j 都改成 mmp[ a[i] ] < mmp[ b[j] ] 就可以了

【模板2】Common Subsequence

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;

const int N=1e3+10;
int dp[N][N];
char a[N],b[N];

int main()
{
	while(~scanf("%s",a)) //很妙的读取方法
	{
		scanf("%s",b);
		int n=strlen(a);
		int m=strlen(b);
		fill(dp[0],dp[0]+n*m,0);
		for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++)
			{
				dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
				if(a[i-1]==b[j-1])
					dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
			}
		cout<<dp[n][m]<<endl;
	}
	return 0;
}

思路
大体思路一样,但注意接收的是字符串,因此判断条件的 if(a[i] == b[j]) 要改成 if(a[i-1] == b[j-1])(因为从下标 0 开始接收字符)【并且本题的读取方法也很妙】

最长公共子序列LCS

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;

const int N=1e3+10;
int dp[N][N];
char a[N],b[N],c[N];

int main()
{
	scanf("%s %s",a,b);
	int n=strlen(a);
	int m=strlen(b);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
			if(a[i-1]==b[j-1])
				dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
		}
	int z=0;
	while(n!=0&&m!=0) //其中一方是 0就结束
	{
		if(a[n-1]==b[m-1]) {
			n--;m--;
			c[z++]=a[n]; //b[n]
		}
		else if(dp[n][m-1]<dp[n-1][m]) n--;
		else if(dp[n][m-1]>=dp[n][m-1]) m--;
	}
	for(int i=z-1;i>=0;i--)
		cout<<c[i];
	cout<<endl;
	return 0;
}

思路
相比模板多了一个步骤:就是从末尾开始对比两串字符串,若字符相同就输出(任意一方)字符,否则对比哪一方的DP大(DP 越大代表 L C S LCS LCS 长度越长),向大的一方递减,直到其中一方的长度为 0 结束

Advanced Fruits(根据LCS将两个词分解)

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;

const int N=1e3+10;
int dp[N][N];
char a[N],b[N],c[N];

int main()
{
	while(~scanf(" %s",a))
	{
		scanf("%s",b);
		int n=strlen(a);
		int m=strlen(b);
		memset(c,0,sizeof(c));
		fill(dp[0],dp[0]+n*m,0);
		for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++)
			{
				dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
				if(a[i-1]==b[j-1])
					dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
			}
		int z=0;
		while(dp[n][m]) //一直到没有共同子序列的元素
		{
			if(a[n-1]==b[m-1])
			{
				n--;m--;
				c[z++]=a[n]; //b[m]
			}
			else if(dp[n][m-1]<dp[n-1][m]) { //可以调整
				n--;
				c[z++]=a[n];
			}
			else if(dp[n][m-1]>=dp[n][m-1]) { //可以调整
				m--;
				c[z++]=b[m];
			}
		}
		while(n!=0) c[z++]=a[--n];	//可以调整
		while(m!=0) c[z++]=b[--m]; //可以调整
		for(int i=z-1;i>=0;i--)
			cout<<c[i];
		cout<<endl;
	}
	return 0;
}

思路
题目意思:将两个字符串合并成一个字符串,两个字符串是合并后的字符串的子序列,要求并且完合并的字符串长度最短

既然合并完的长度最短,而合并完的长度最短为 n + m - dp[n][m] n n n m m m分别是两个字符串的长度, d p dp dp 是两个的子序列),那么只有 d p dp dp最大才能保证整体最短,那么 L C S LCS LCS从末尾开始比较两串字符串,若字符相同就输出(任意一方)字符,否则对比哪一方的 dp 大( dp 越大代表 L C S LCS LCS 长度越长),向大的一方递减,直到其中没有共同子序列的元素,最后还要把两个字符串插入所剩的元素分别输出

注意
如果 w h i l e while while 循环用 n!= 0 && m!= 0 替换 dp[n][m] 有个歧义的地方,就是输出顺序问题,只能说译文的样例数据都保证 L C S LCS LCS 大于 0,要是举个例子:aaaaa 和 bbbbb( L C S LCS LCS 等于 0),那就不能保证先输出 a 还是 b 了【其实用 dp[n][m] 也有相同的情况,若输出顺序有规定,则需要调整代码标记的地方】

[HAOI2010]最长公共子序列

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N=1e4+10;
char a[N],b[N];
ll dp[2][N],g[2][N];
ll mod=1e8;

int main()
{
	scanf("%s",a);
	scanf("%s",b);
	int n=strlen(a)-1;
	int m=strlen(b)-1;
	for(int i=0;i<=m;i++) g[0][i]=1; // a的空字符串和 b的字符串的方案数定为 1 
	g[1][0]=1; // a字符串和 b的空字符串的方案数定为 1 
	int cnt=1;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			g[cnt][j]=0; //重置为 0 
			dp[cnt][j]=max(dp[cnt^1][j],dp[cnt][j-1]);
			if(a[i-1]==b[j-1])
				dp[cnt][j]=max(dp[cnt][j],dp[cnt^1][j-1]+1);
			if(a[i-1]==b[j-1]&&dp[cnt][j]==dp[cnt^1][j-1]+1) // 一 
				g[cnt][j]=g[cnt^1][j-1];
			if(dp[cnt][j]==dp[cnt^1][j]) // 三四 
				g[cnt][j]+=g[cnt^1][j];
			if(dp[cnt][j]==dp[cnt][j-1]) // 二四 
				g[cnt][j]+=g[cnt][j-1];
			if(a[i-1]!=b[j-1]&&dp[cnt][j]==dp[cnt^1][j-1]) //四
				g[cnt][j]-=g[cnt^1][j-1];
			g[cnt][j]%=mod;
		}
		cnt^=1;
	}
	cout<<dp[cnt^1][m]<<endl;
	cout<<g[cnt^1][m]<<endl;
	return 0;
}

思路
在这里插入图片描述
我的理解
什么情况下会 L C S LCS LCS 的种数会变化 ?
只有在 a[i]b[j] 至少有一个属于 dp[i][j] 时。因此我们可以列出下面所有的情况:
一、a[i]b[j] 都属于所有的 l c m ( i , j ) lcm(i, j) lcm(i,j) l c m ( i , j ) lcm(i, j) lcm(i,j)dp[i][j]
二、a[i] 属于所有的 l c m ( i , j ) lcm(i, j) lcm(i,j)b[j]并非属于所有的 l c m ( i , j ) lcm(i, j) lcm(i,j)
三、b[j] 属于所有的 l c m ( i , j ) lcm(i, j) lcm(i,j)a[i]并非属于所有的 l c m ( i , j ) lcm(i, j) lcm(i,j)

它们的伪代码如下:
a[i] = b[j],则 dp[i][j] = dp[i - 1][j - 1] + 1【对应一】

dp[i][j] = dp[i][j - 1],则 b[j] 并非属于所有的 l c m ( i , j ) lcm(i, j) lcm(i,j)【对应二与其他】

dp[i - 1][j] = dp[i][j],则 a[i] 并非属于所有的 l c m ( i , j ) lcm(i, j) lcm(i,j)【对应三与其他】

上面两种情况还有可能对应其他,也就是 a[i]b[j]不属于所有的 l c m ( i , j ) lcm(i, j) lcm(i,j),其它情况对应的伪代码是 dp[i][j] = dp[i - 1][j - 1],它包含了上面两种合起来的其他情况,因此我们根据容斥原理,要减去这些情况,因为只有对应一二三才使 L C S LCS LCS 的种数变化,其他情况不会

那么我们就可以列出其对应的表达式(g[i][j] 表示 l c m ( i , j ) lcm(i, j) lcm(i,j) 的种数):

if (a[i] == b[j]) g[i][j] = g[i - 1][j - 1]	//对应一

if (dp[i][j] == dp[i][j - 1]) g[i][j] += g[i][j - 1]	//对应二和其他

if (dp[i][j] == dp[i - 1][j]) g[i][j] += g[i - 1][j]	//对应三和其他

if (dp[i][j] == dp[i - 1][j - 1]) g[i][j] -= g[i - 1][j - 1](容斥原理)

注意
代码中 cnt^1 的 ^ 1 1 1是异或的意思,其使用方法如下

cnt = 0
cnt ^= 1	//cnt = 0
cnt ^= 1	//cnt = 1
cnt ^= 1	//cnt = 0
cnt ^= 1	//cnt = 1

这样就构成了不断迭代 01,实现了滚动数组
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值