LCS算法的概述及由来(LCS)最长公共子序列

第一节、问题描述
    什么是最长公共子序列呢?好比一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则S 称为已知序列的最长公共子序列。


    举个例子,如:有两条随机序列,如 1 3 4 5 5 ,and 2 4 5 5 7 6,则它们的最长公共子序列便是:4 5 5。


    注意最长公共子串(Longest CommonSubstring)和最长公共子序列(LongestCommon Subsequence, LCS)的区别:子串(Substring)是串的一个连续的部分,子序列(Subsequence)则是从不改变序列的顺序,而从序列中去掉任意的元素而获得的新序列;更简略地说,前者(子串)的字符的位置必须连续,后者(子序列LCS)则不必。比如字符串acdfg同akdfc的最长公共子串为df,而他们的最长公共子序列是adf。LCS可以使用动态规划法解决。下文具体描述。


第二节、LCS问题的解决思路
穷举法   
    解最长公共子序列问题时最容易想到的算法是穷举搜索法,即对X的每一个子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列,并且在检查过程中选出最长的公共子序列。X和Y的所有子序列都检查过后即可求出X和Y的最长公共子序列。X的一个子序列相应于下标序列{1, 2, …, m}的一个子序列,因此,X共有2m个不同子序列(Y亦如此,如为2^n),从而穷举搜索法需要指数时间(2^m * 2^n)。


动态规划算法
    事实上,最长公共子序列问题也有最优子结构性质。
记:
Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀)
Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀)
假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y)。
若xm=yn(最后一个字符相同),则不难用反证法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn 且显然有Zk-1∈LCS(Xm-1 , Yn-1)即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X , Y)的长度等于LCS(Xm-1 , Yn-1)的长度加1)。
若xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y),类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。
    由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。
    也就是说,解决这个LCS问题,你要求三个方面的东西:1、LCS(Xm-1,Yn-1)+1;2、LCS(Xm-1,Y),LCS(X,Yn-1);3、max{LCS(Xm-1,Y),LCS(X,Yn-1)}。
    行文至此,其实对这个LCS的动态规划解法已叙述殆尽,不过,为了成书的某种必要性,下面,我试着再多加详细阐述这个问题。
第三节、动态规划算法解LCS问题
3.1、最长公共子序列的结构
    最长公共子序列的结构有如下表示:
    设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>,则:
若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;
若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;
若xm≠yn且zk≠yn ,则Z是X和Yn-1的最长公共子序列。
    其中Xm-1=<x1, x2, …, xm-1>,Yn-1=<y1, y2, …, yn-1>,Zk-1=<z1, z2, …, zk-1>。
3、2.子问题的递归结构
    由最长公共子序列问题的最优子结构性质可知,要找出X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。当xm≠yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者即为X和Y的一个最长公共子序列。
    由此递归结构容易看到最长公共子序列问题具有子问题重叠性质。例如,在计算X和Y的最长公共子序列时,可能要计算出X和Yn-1及Xm-1和Y的最长公共子序列。而这两个子问题都包含一个公共子问题,即计算Xm-1和Yn-1的最长公共子序列。

    与矩阵连乘积最优计算次序问题类似,我们来建立子问题的最优值的递归关系。用c[i,j]记录序列Xi和Yj的最长公共子序列的长度。其中Xi=<x1, x2, …, xi>,Yj=<y1, y2, …, yj>。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列,故c[i,j]=0。其他情况下,由定理可建立递归关系如下:动态转移方程:

(1)、当 i = 0 或 j = 0时;c[ i, j ] == 0;

(2)、当 i > 0且 j > 0, i == j 时;c [ i, j ] == c [ i-1, j-1 ] + 1;

(3)、当 i>0且 j > 0,j != i 时;c [ i, j ] == max ( c [ i-1, j ], c [ i, j-1 ]);  

4、lcs的模板(以杭电-1159为例)

Common Subsequence
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 28725    Accepted Submission(s): 12841




Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 


 


Sample Input
abcfbc abfcab
programming contest 
abcd mnp
 


Sample Output
4
2
0
 

#include<stdio.h>
#include<string.h>
int max(int a,int b)     //求最值函数
{
    if(a>b) return a;
    else    return b;
}
char str1[1010],str2[1010];   //定义数组str1、str2来存两个字符串;
int dp[1010][1010];          
int len1,len2,i,j;
int main()
{
    while(scanf("%s%s",str1,str2)!=EOF)
    {
        len1=strlen(str1);
        len2=strlen(str2);
        memset(dp,0,sizeof(dp));
        for(i=1;i<=len1;i++)
          for(j=1;j<=len2;j++)
          {
             if(str1[i-1] == str2[j-1])
                dp[i][j]=dp[i-1][j-1]+1;
             else
                dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
           }
       printf("%d\n",dp[len1][len2]);
     }
   return 0;
}



        

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值