二分图中常见网络流模型

这里写图片描述
首先通过染色、拆点等方法构造二分图。
1.最小顶点覆盖。
在边集E中,每条边至少有一个端点被选出,所需要的最小点集V。
(变种: 最小点权覆盖集)

2.最大点独立集。
在点集U中选出子集V,使V中的点两两之间没有边相连,最大化V。
(变种:最大点权独立集)

3.最小边覆盖。
在点集U中,每个点至少有一条出边被选出,所需要的最小边集E。

4.最小路径覆盖。
对于DAG,使用最少的不相交的链(路径)覆盖所有点。通过拆点得到二分图后就是最小边覆盖。

5.最大团。
在点集U中,选出点集V,是每个点两两之间有连边。

6.最大匹配。
在二分图边集E中选出子集E1,每条E1中的边不相交。最大化E1。

通过反证法可以证得:
最大匹配=最大流
最小顶点覆盖=最大匹配
最大点独立集 =|V|-最大匹配
最小边覆盖=|V|-最大匹配
最大团=补图的最大点独立集
最小点权覆盖集 通过建模求最大流
最小点权覆盖集+最大点权独立集=|V|

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值