网络流常见概念

点集

  • 点的集合。

布尔代数

  • 布尔代数起源于数学领域,是一个用于集合运算和逻辑运算的公式:〈B,∨,∧,¬ 〉。其中B为一个非空集合,∨,∧为定义在B上的两个二元运算,¬为定义在B上的一个一元运算。

闭合图

  • 定义一个有向图G=(V,E)的闭合图是该有向图的一个点集,且该点集的所有出边都还指向该点集。
  • (可以理解为班级G中有一个小团体,这个小团体内部的人只和这个小团体里的人有关系)
  • 该网络有 9 个闭合图(含空集): ∅ , {3,4,5} , {4,5} , {5} , {2,4,5} , {2,5} ,{2,3,4,5}, {1,2,4,5}, {1,2,3,4,5}。

最大权闭合图

  • 给每个点一个权值,点权之和最大的闭合图就是最大权闭合图。
  • (学习成绩整体最好的小团体)
  • 其中有最大权和的闭合图是 {3,4,5} ,权和为 4。

密度

  • 定义一个无向图G=(V,E)的密度D为该图的边数\left |E \right |与该图的点数\left |V \right |的比值D=\frac{\left |E \right |}{\left |V \right |}
  • (丝织品上图案的疏密程度)

最大密度子图

  • 无向图G=(V,E)中具有最大密度的子图G'=(V',E')称为最大密度子图,即最大化D'=\frac{\left |E' \right |}{\left |V' \right |}
  • (丝织品上图案最密集的区域)

简单割

  • 若一个s-t割满足割中的每条边都只与源s或汇t关联,称该割为简单割。

参考资料:

  • 《最小割模型在信息学竞赛中的应用》 胡伯涛
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值