深度学习在计算机视觉领域有着广泛的应用,其中图像分类是一个重要的任务。本文将介绍如何使用Python和深度学习库来构建和训练图像分类模型。我们将使用一个经典的深度学习框架——TensorFlow来完成这个任务。
-
数据集准备
在开始构建图像分类模型之前,我们需要准备一个适当的数据集。可以使用公开的数据集,如MNIST、CIFAR-10等,也可以使用自己收集的数据集。确保数据集中的图像样本具有相应的标签,用于指示图像所属的类别。 -
环境搭建
首先,我们需要安装Python和TensorFlow。可以通过以下命令使用pip安装TensorFlow:
pip install tensorflow
- 导入必要的库和模块
在开始编写代码之前,我们需要导入一些必要的Python库和TensorFlow模块。以下是导入所需库和模块的示例代码:
import tensorflow as tf
from tensorflow import keras