初探 TensorFlow 2.0

1 篇文章 0 订阅
1 篇文章 0 订阅

初探 TensorFlow 2.0

安装 TensorFlow 2.0 虚拟环境

Mac or Linux

conda create --name tf2 python=3.6

Windows

conda create --name tf2 python=3.6

使用 activate 命令激活

Mac or Linux

source activate tf2

Windows

activate

同理deactivate用来退出环境

安装tensorflow的环境

首先使用清华源

sudo pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

Or

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

其次,安装 tensorflow 2.0

sudo pip install tensorflow==2.0.0-alpha

Or

pip install tensorflow==2.0.0-alpha

创建Jupyter Notebook环境

需要将tensorflow2.0作为一个kernel加入到jupyter环境中

conda install notebook ipykernel

sudo python -m ipykernel install --name tf2

Or

conda install notebook ipykernel

python -m ipykernel install --name tf2

使用jupyter notebook命令启动ipython。环境切换到tf2

导入tensorflow和keras,查看对应版本信息

import tensorflow as tf
from tensorflow.keras import layers

print(tf.__version__)
print(tf.keras.__version__)
2.0.0-alpha0
2.2.4-tf

介绍两种建立神经网络的方式

  • 使用tf.keras.Sequential创建神经网络
  • 使用 Keras 函数式 API创建神经网络
# 导入数据,下载数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape([x_train.shape[0], -1])
x_test = x_test.reshape([x_test.shape[0], -1])
print(x_train.shape, ' ', y_train.shape)
print(x_test.shape, ' ', y_test.shape)
print(x_train.dtype)
(60000, 784)   (60000,)
(10000, 784)   (10000,)
uint8

创建神经网络结构的两种方案

方案1:使用tf.keras.Sequential创建神经网络

Method 1

model = tf.keras.Sequential()
model.add(layers.Dense(64,activation='relu',input_shape=(784,)))
model.add(layers.Dense(32,activation='relu',kernel_initializer=tf.keras.initializers.glorot_normal))
model.add(layers.Dense(32,activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.Dense(10,activation='softmax'))

Method 2

# model = tf.keras.Sequential([
#     layers.Dense(64, activation='relu', kernel_initializer='he_normal', input_shape=(784,)),
#     layers.Dense(64, activation='relu', kernel_initializer='he_normal'),
#     layers.Dense(64, activation='relu', kernel_initializer='he_normal',kernel_regularizer=tf.keras.regularizers.l2(0.01)),
#     layers.Dense(10, activation='softmax')
# ])

complie函数,主要是来编译我们的模型

函数说明

  • 第一个是使用的优化器optimizer;
  • 第二个是模型的损失函数,这里使用的是sparse_categorical_crossentropy,也可以写成loss=tf.keras.losses.SparseCategoricalCrossentropy(),但在使用save方法保存和加载模型的时会报错,所以推荐使用字符串的写法;
  • 第三个参数是模型评估的方式,这里我们使用正确率来评估模型,也可以评估模型的其他方法。

使用fit函数训练模型

加入了验证集,batch_size设置为256,并用history来保存了结果

绘制accuracy曲线

运行history.dict。有一个关键的key是history,保留了每一步的loss、accuracy、val_loss、val_accuracy。
我们直接可以使用history.history[‘accuracy’]来访问每一步训练集的准确率

之所以会有accuracy,是因为在compile函数中加入了metrics=[‘accuracy’],之所以会有val_loss和val_accuracy,是因为我们在fit函数中加入了validation_split=0.3

model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

history = model.fit(x_train, y_train, batch_size=256, epochs=100, validation_split=0.3, verbose=0)

import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training', 'validation'], loc='upper left')
plt.show()
<Figure size 640x480 with 1 Axes>
# 使用model.summary()来查看构建的模型
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 64)                50240     
_________________________________________________________________
dense_1 (Dense)              (None, 32)                2080      
_________________________________________________________________
dense_2 (Dense)              (None, 32)                1056      
_________________________________________________________________
dense_3 (Dense)              (None, 10)                330       
=================================================================
Total params: 53,706
Trainable params: 53,706
Non-trainable params: 0
_________________________________________________________________
# history = model.fit(x_train, y_train, batch_size=256, epochs=100, validation_split=0.3, verbose=0)
# import matplotlib.pyplot as plt
# plt.plot(history.history['accuracy'])
# plt.plot(history.history['val_accuracy'])
# plt.legend(['training', 'validation'], loc='upper left')
# plt.show()
# import matplotlib.pyplot as plt
# plt.plot(history.history['accuracy'])
# plt.plot(history.history['val_accuracy'])
# plt.legend(['training', 'validation'], loc='upper left')
# plt.show()

使用evaluate进行模型的评测

results = model.evaluate(x_test,y_test)
10000/10000 [==============================] - 1s 76us/sample - loss: 0.2339 - accuracy: 0.9655

方案2:使用Keras函数式API创建神经网络

使用tf.keras.Sequential是层的简单堆叠,无法表示任意模型,如具有非序列数据流的模型(例如,残差连接)。而使用Keras函数式API则可以。在使用Keras函数式API时,层实例可调用并返回张量。而输入张量和输出张量用于定义 tf.keras.Model实例

构建模型

input_x = tf.keras.Input(shape=(784,))
hidden1 = layers.Dense(64, activation='relu', kernel_initializer='he_normal')(input_x)
hidden2 = layers.Dense(64, activation='relu', kernel_initializer='he_normal')(hidden1)
hidden3 = layers.Dense(64, activation='relu', kernel_initializer='he_normal',kernel_regularizer=tf.keras.regularizers.l2(0.01))(hidden2)
output = layers.Dense(10, activation='softmax')(hidden3)

model2 = tf.keras.Model(inputs = input_x,outputs = output)

训练模型

model2.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              #loss=tf.keras.losses.SparseCategoricalCrossentropy(),
                loss='sparse_categorical_crossentropy',
               metrics=['accuracy'])
history = model2.fit(x_train, y_train, batch_size=256, epochs=100, validation_split=0.3, verbose=0)
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training', 'validation'], loc='upper left')
plt.show()

在这里插入图片描述

模型的保存和加载

使用save和tf.keras.models.load_model保存和加载模型

model2.save('model.h5')
model3 = tf.keras.models.load_model('model.h5')
results = model3.evaluate(x_test,y_test)
10000/10000 [==============================] - 1s 85us/sample - loss: 0.2075 - accuracy: 0.9704

添加BN和Dropout

注意:Relu、BN和Dropout的顺序!!!

model4 = tf.keras.Sequential([
    layers.Dense(64, activation='relu', input_shape=(784,)),
    layers.BatchNormalization(),
    layers.Dropout(0.2),
    layers.Dense(64, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.2),
    layers.Dense(64, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.2),
    layers.Dense(10, activation='softmax')
])
model4.compile(optimizer=tf.keras.optimizers.Adam(0.001),
             loss='sparse_categorical_crossentropy',
             metrics=['accuracy'])

model4.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              #loss=tf.keras.losses.SparseCategoricalCrossentropy(),
               loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

history = model4.fit(x_train, y_train, batch_size=256, epochs=100, validation_split=0.3, verbose=0)
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training', 'validation'], loc='upper left')
plt.show()

在这里插入图片描述

思考-先BN还是先Relu?

一般认为的顺序是Relu->BN->Dropout,Dropout的顺序是最后一个应该是没有疑问的,关键是Relu和BN的顺序。更扩展点,是BN和非线性激活函数的关系。
关于这个问题,论文中给出的是先BN,后面接非线性激活函数。但实际中,也有人主张先非线性激活函数,再是BN。

推荐链接:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值