Hung-yi-Lee__ML2019
Hirotransfer
Stay Hungry, Stay Foolish.
展开
-
中心极限定理 与 正态分布
学习中心极限定理,学习正态分布,学习最大似然估计最优化理论及方法高等数学统计学概率论参数估计正态分布与中心极限定理(中心极限定理是正态分布的一个前置知识)如果误差可以看作许多微小量的叠加,则根据中心极限定理(用样本的平均值估计总体的期望),随机误差理所当然服从正态分布;假设一随机变量X服从一个期望和方差分别为μ和σ2\mu{和}\sigma^...原创 2019-05-13 22:04:47 · 5012 阅读 · 0 评论 -
Machine_Learning_2019_Task 10 CART
Machine_Learning_2019_Task 10 CART要求学习Gini指数学习回归、分类树剪枝CART树目标变量是类别型——分类树:Gini指数目标变量是连续型——回归树:平方误差最小化(前期Task8已解释)算法决策树生成决策树剪枝CART与ID3的异同点二元划分二叉树不易产生数据碎片,精确度往往也会高于多叉树。选择变量的不纯度分类...原创 2019-06-18 17:39:42 · 494 阅读 · 0 评论 -
Machine_Learning_2019_Task 8 决策树
Machine_Learning_2019_Task 8 决策树ID3(基于信息增益)C4.5(基于信息增益比)CART(Gini指数)扩充:学习CART的生成(回归树模型)【参考统计学习方法】熵:H(x)=−∑i=1npilogpiH(x) = -\sum_{i=1}^{n}p_i\log{p_i}H(x)=−∑i=1npilogpi条件熵: H(X∣Y)=∑P(X∣...原创 2019-06-11 15:02:12 · 385 阅读 · 0 评论 -
Machine_Learning_2019_Task 9 绘制树图形
Machine_Learning_2019_Task 9 绘制树图形要求利用 Python 结合 Matplotlib 绘制树图形Matplotlib 注释构造注解树导入matplotlibimport matplotlib.pyplot as plt绘制属性图,定义文本框和箭头格式以及树结点格式的常量decisionNode = dict(boxstyle="saw...原创 2019-06-14 17:20:36 · 244 阅读 · 0 评论 -
李宏毅机器学习 Machine_Learning_2019_Task 6
李宏毅机器学习 Machine_Learning_2019_Task 6学习要求公式手动推导不掉包,手动实现算法独立手动创建数据,实现分类任务学习算法内容,对数据进行归一化操作主要是学习LR算法的核心代码学习内容李航机器学习机器学习实战负责人笔记方案 1 (参考负责人笔记)import numpy as npimport matplotlib.pyplot ...原创 2019-06-02 15:33:31 · 298 阅读 · 0 评论 -
李宏毅机器学习 Machine_Learning_2019_Task 5
李宏毅机器学习 Machine_Learning_2019_Task 5学习导图学习内容LR(Logistic Regression) 学习Logistic 函数是一个概率分布函数,即给定某个特定输入,该函数将计算输出为“Success”的概率,即对问题的回答为“Yes”的概率。推导 LR损失函数Logistic回归模型估计概率(向量形式)σ(t)=11+exp(−t)...原创 2019-05-29 02:03:20 · 341 阅读 · 0 评论 -
李宏毅机器学习 Machine_Learning_2019_Task 7
李宏毅机器学习 Machine_Learning_2019_Task 7熵证明预备知识Jessen 不等式:Ef(x)≥f(Ex)E f(x) \geq f(E x)Ef(x)≥f(Ex)其中,f(x)为凸函数,Ex为期望值.对于离散型随机变量,可以将以上形式转换为:∑ipif(xi)≥f(∑ipixi)\sum_{i} p_{i} f\left(x_{i}\righ...原创 2019-06-05 22:41:46 · 381 阅读 · 0 评论 -
Hung-yi Li Machine Learning 2019 Task1
李宏毅机器学习 Machine_Learning_2019_Task1机器学习打卡任务内容:了解什么是Machine learning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Loss function学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习L2-Norm,L1-Norm,L0-Norm...原创 2019-05-12 17:12:09 · 565 阅读 · 0 评论 -
李宏毅机器学习 Machine_Learning_2019_Task2
李宏毅机器学习 Machine_Learning_2019_Task2机器学习打卡任务内容:理解偏差 (Bias) & 方差 (Variance)偏差(bias)和方差(variance)的含义泛化误差可以分解成偏差的平方加上方差加上噪声。偏差度量了学习算法的期望预测和真实结果的偏离程度,刻画了学习算法本身的拟合能力,方差度量了同样大小的训练集的变动所导致的学习性能的变化,刻...原创 2019-05-16 17:53:53 · 588 阅读 · 0 评论 -
李宏毅机器学习 Machine_Learning_2019_Task 4_Part II
李宏毅机器学习 Machine_Learning_2019_Task 4_Part II学习逻辑回归 Logistic Regression 算法线性回归正则化(回顾前期Task)岭回归与Lasso回归(回顾前期Task)逻辑回归学习逻辑回归与线性回归之间的区别以及 Logistic Regression 梯度下降 (结合对比线性回归的梯度下降法)线性回归是输入到输出的线性变换,...原创 2019-05-25 01:51:00 · 233 阅读 · 0 评论 -
李宏毅机器学习 Machine_Learning_2019_Task 4_Part I
学习目标理解概率模型从基础概率推导贝叶斯公式以及朴素贝叶斯公式贝叶斯推论什么是贝叶斯定理(Bayes Theorem)原创 2019-05-25 01:42:40 · 676 阅读 · 0 评论 -
李宏毅_Machine Learning_2019 Task 3
李宏毅_Machine Learning_2019 Task 3学习打卡内容大作业按照 Homework1_Introduction.txt 的要求完成本次作业作业1:预测PM2.5的值在这个作业中,我们将用梯度下降法 (Gradient Descent) 预测 PM2.5 的值 (Regression 回归问题)Homework1要求:要求 python3.5+只能用nu...原创 2019-05-21 01:08:48 · 774 阅读 · 0 评论 -
Machine_Learning_2019_SVM: An Introduction
浅谈 SVM 之分类(Classification)、回归(Regression)与排序(Ranking)问题0 介绍支持向量机(SVMs)在数据挖掘和机器学习领域得到了广泛的研究与应用,其通常用于学习分类、回归或排序函数,它们分别被称为分类(SVM)、支持向量回归(SVR)或排序支持向量机(RankSVM)。支持向量机的两个特性是:通过margin maximization(间隔最大化)...原创 2019-06-28 08:34:08 · 373 阅读 · 0 评论