【PA2012】【BZOJ3502】Tanie linie

Description

n个数字,求不相交的总和最大的最多k个连续子序列。
1<= k<= N<= 1000000。

Input

Output

Sample Input

5 2

7 -3 4 -9 5

Sample Output

13
HINT

Source

傻逼卡常数好题…又卡常数又卡内存
这里写图片描述
如果范围小,有非常显然的费用流做法.
然后范围大了,就考虑把费用流依靠线段树来实现增广就行了
实质性的操作就是区间取反.
复杂度是 O(qklogn) 因为这个题只有一组询问,所以就是 O(klogn)
四倍经验…

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 1000010
#define lchild rt<<1,l,mid
#define rchild rt<<1|1,mid+1,r
#define ln rt<<1
#define rn rt<<1|1
#define GET (ch>='0'&&ch<='9')
#define LL long long
using namespace std;
inline void in(int &x)
{
    char ch=getchar();x=0;int flag=1;
    while (!GET)    flag=ch=='-'?-1:1,ch=getchar();
    while (GET) x=x*10+ch-'0',ch=getchar();x*=flag;
}
int n,k,top;
int a[MAXN];
struct node
{
    int lpos,rpos,pos1,pos2;
    LL maxn,sum,lval,rval;
    inline void init(int pos,int val)   {   lpos=rpos=pos1=pos2=pos;lval=rval=maxn=sum=val; }
};
struct seg
{
    int l,r;
    bool flag;
    node mx,mn;
    inline void init(long long val) {   mn.init(l,-val);mx.init(l,val); }
}tree[MAXN*2+200000];
inline node merge(const node &a,const node &b)
{
    node ret;ret.sum=a.sum+b.sum;
    ret.lval=a.lval;ret.lpos=a.lpos;
    if (a.sum+b.lval>ret.lval)  ret.lval=a.sum+b.lval,ret.lpos=b.lpos;
    ret.rval=b.rval;ret.rpos=b.rpos;    
    if (b.sum+a.rval>ret.rval)  ret.rval=b.sum+a.rval,ret.rpos=a.rpos;
    ret.maxn=a.rval+b.lval;ret.pos1=a.rpos;ret.pos2=b.lpos;
    if (ret.maxn<a.maxn)    ret.maxn=a.maxn,ret.pos1=a.pos1,ret.pos2=a.pos2;
    if (ret.maxn<b.maxn)    ret.maxn=b.maxn,ret.pos1=b.pos1,ret.pos2=b.pos2;
    return ret;
}
void build(int rt=1,int l=1,int r=n)
{
    tree[rt].l=l;tree[rt].r=r;
    if (l==r)   {   tree[rt].init(a[l]);return; }
    int mid=(l+r)>>1;build(lchild);build(rchild);
    tree[rt].mn=merge(tree[ln].mn,tree[rn].mn);
    tree[rt].mx=merge(tree[ln].mx,tree[rn].mx);
}
void rev(int rt,int l,int r)
{
    int L=tree[rt].l,R=tree[rt].r,mid=(L+R)>>1;
    if (l<=L&&r>=R) {   tree[rt].flag^=1;swap(tree[rt].mn,tree[rt].mx);return;  }
    if (tree[rt].flag)
    {
        tree[ln].flag^=1;tree[rn].flag^=1;
        swap(tree[ln].mn,tree[ln].mx);swap(tree[rn].mn,tree[rn].mx);
        tree[rt].flag^=1;
    }
    if (r<=mid) rev(ln,l,r);
    else    if (l>mid)  rev(rn,l,r);
    else    rev(ln,l,mid),rev(rn,mid+1,r);
    tree[rt].mn=merge(tree[ln].mn,tree[rn].mn);
    tree[rt].mx=merge(tree[ln].mx,tree[rn].mx);
}
node query(int rt,int l,int r)
{
    int L=tree[rt].l,R=tree[rt].r,mid=(L+R)>>1;
    if (l<=L&&r>=R) return tree[rt].mx;
    if (tree[rt].flag)
    {
        tree[ln].flag^=1;tree[rn].flag^=1;
        swap(tree[ln].mn,tree[ln].mx);swap(tree[rn].mn,tree[rn].mx);
        tree[rt].flag^=1;
    }
    if (r<=mid) return query(ln,l,r);
    else    if (l>mid)  return query(rn,l,r);
    else    return merge(query(ln,l,mid),query(rn,mid+1,r));
}
struct Node {   int l,r;    }sta[MAXN];
inline void Query(int l,int r,int k)
{
    long long ans=0;top=0;
    while (k--)
    {
        node ret=query(1,l,r);
        if (ret.maxn>0) ans+=ret.maxn;  else    break;
        rev(1,ret.pos1,ret.pos2);sta[++top]=(Node){ret.pos1,ret.pos2};
    }
    cout<<ans<<endl;
}
int main()
{
    in(n);in(k);
    for (int i=1;i<=n;i++)  in(a[i]);build();
    Query(1,n,k);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值