TensorFlow函数:tf.image.resize_nearest_neighbor函数

tf.image.resize_nearest_neighbor(
    images,
    size,
    align_corners=False,
    name=None
)

使用最近邻插值调整images为size.

参数:

images:一个Tensor,必须是下列类型之一:int8,uint8,int16,uint16,int32,int64,half,float32,float64.4-D与形状[batch, height, width, channels].
size:2个元素(new_height, new_width)的1维int32张量,表示图像的新大小.
align_corners:可选的bool,默认为False,如果为True,则输入和输出张量的4个角像素的中心对齐,并保留角落像素处的值.
name:操作的名称(可选).
返回:

该函数与images具有相同类型的Tensor.
举例

upsample1 = tf.image.resize_nearest_neighbor(encoded, (7,7))
# Now 7x7x8
conv4 = tf.layers.conv2d(upsample1, 8, (3,3), padding='same', activation=tf.nn.relu)
# Now 7x7x8
upsample2 = tf.image.resize_nearest_neighbor(conv4, (14,14))
# Now 14x14x8
conv5 = tf.layers.conv2d(upsample2, 8, (3,3), padding='same', activation=tf.nn.relu)
# Now 14x14x8
upsample3 = tf.image.resize_nearest_neighbor(conv5, (28,28))
# Now 28x28x8
conv6 = tf.layers.conv2d(upsample3, 16, (3,3), padding='same', activation=tf.nn.relu)
# Now 28x28x16

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值