注:此博客不再更新,所有最新文章将发表在个人独立博客limengting.site。分享技术,记录生活,欢迎大家关注
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
1、You must not modify the array (assume the array is read only).
2、You must use only constant, O(1) extra space.
3、Your runtime complexity should be less than O(n2).
4、There is only one duplicate number in the array, but it could be repeated more than once.
public class Solution {
public int findDuplicate(int[] nums) {
if (nums.length > 1) {
int slow = nums[0], fast = nums[0], slow2 = nums[0];
while (slow < nums.length && nums[fast] < nums.length) {
slow = nums[slow];
fast = nums[nums[fast]];
if (slow == fast) {
while (slow2 != slow) {
slow2 = nums[slow2];
slow = nums[slow];
}
return slow;
}
}
}
return -1;
}
}
- Linked List Cycle II(Java)
Given a linked list, return the node where the cycle begins. If there is no cycle, return null.
Note: Do not modify the linked list.
Follow up:
Can you solve it without using extra space?
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
if (head == null || head.next == null) return null;
ListNode slow = head, fast = head, start = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast) {
while (slow != start) {
slow = slow.next;
start = start.next;
}
return start;
}
}
return null;
}
}