On the Use of Wavelet Domain and Machine Learning for the
Analysis of Epileptic Seizure Detection from EEG Signals
癫痫患者的脑部癫痫发作是由暂时和不可预知的电中断引起的。
传统上,脑电信号记录来自大脑的电活动,由医务人员手动学习,㼿技术耗时长,输出不可靠。为了解决这一问题,本研究提出了一种新的癫痫发作检测结构,使用来自德国波恩大学的脑电信号和印度Senthil综合专科医院的实时医疗记录,将信号分解成6个频率子带,采用离散小波变换提取12个统计函数。
特别是,确定了7个最佳特征,并进一步将其输入到k近邻、朴素贝叶斯、支持向量机和决策树分类器中,用于两种类型和三种类型的分类。使用了六个统计参数来衡量这些分类的性能。已经发现,特征和分类器的不同组合产生不同的结果。总体而言,这项研究是为波恩和Senthil实时临床数据集的16个不同的2类和3类分类挑战找到最佳组合特征集和分类器的首次尝试。
1. Introduction
癫痫是一种大脑疾病,包括由于不受控制的电运动导致的大脑中的反复发作。它导致不受约束的抽搐运动和短暂的意识丧失。它具有潜在的生命威胁,因为它会导致大脑和肺部功能障碍、心力衰竭和意外死亡。因此,当务之急是诊断癫痫[1]。记录大脑中电运动和活动的信号是脑电图(EEG)信号。在这个过程中,电极被放置在头皮的不同部位,产生多通道数据。由于这是一种非侵入性和廉价的方法,它在癫痫检测等神经病学诊断中起着重要的数据来源的作用[1,2]。通常,医务人员通过视觉检查长期EEG来收集记录。这个方法耗时、繁琐且容易出错,并且需要一定的专业水平。因此,需要一个自动癫痫发作检测框架。
这由医生读取脑电记录以确定癫痫病情的繁琐性质,因此有必要研究更直接、更快、更有效地检测癫痫病情的方法。在文献[3]中,进行了一种模式识别研究,它使用时间域(TD)函数来检测癫痫发作,包括波形长度(WL)、一些斜率符号变化(SSC)和许多过零点(ZC),这些都是滤波后的脑电数据的导数,用于检测癫痫发作的滤波脑电数据的离散小波变换(DWT)。为此,研究了基于支持向量机和朴素贝叶斯(NB)的特征提取方法。结果表明,对于常规睁眼和癫痫数据集,对于直接TD函数和基于离散余弦变换的TD函数,建议的方法应该达到100%的最佳准确率。
在文献[4]中,将脑电与深度学习计算技术相结合来诊断癫痫发作已势在必行。研究强调设计和评估基于深度卷积神经网络的癫痫发作检测方法。提出的结果是确定最准确的癫痫发作检测方法,并将其分为三种方法。最高平均分类正确率为99.21%,结果表明,信号-图像转换方法和正确率数据模型的比较结果在绝大多数情况下都超过了以往的研究。此外,为了找出最好的分类精度和脑电信号的频率特征,使用了Shapley Additive Informance(Shap)分析方法。
在[5]中,波恩数据集被用来评估新建议的自动记录癫痫脑电信号的技术。基于近似熵和重复混合量化分析,利用卷积神经网络。结果表明,近似熵和重复量化能够有效地检测癫痫发作。经典记录自动区分癫痫脑电信号和卷积神经网络,特别是结合近似熵和递归量化分析特征时,结果分别达到98.84%、99.35%和99.26%。这一领域的其他几项工作都表明,癫痫状态的自动检测是可能的,从而排除了医生检查脑电的繁琐任务。工具将有助于癫痫的临床诊断和治疗。
在提供准确的解决方案的问题上。癫痫发作,已经提出了几种算法,并且。它们提供了几个级别的准确性。在[6-8]中,有几个将时频域算法引入到信号处理中。从收集到的脑电信号癫痫发作的准确特征。其中两种算法是短时傅里叶变换和多小波变换,这两种算法经过验证取得了令人满意的结果。离散小波变换在[9]中被用于癫痫发作的检测,首先使用此方法从脑电信号中提取特征,然后进行主成分分析、独立成分分析,最后引入线性判别分析,以降低各种信号的维度,便于直观地表示。然后利用支持向量机学习模型对多维平面上的混合脑电信号进行分类。
如前所述,支持向量机对于信号分类是有效的,但这并不是没有选择最佳参数数量的挑战。设置合适的参数是实现高精度癫痫发作检测的关键。超参数的调整和选择,使得粒子群优化和遗传算法具有很高的精度。癫痫发作的检测必须准确和高效,这就是为什么最近引入了机器学习算法。算法可以准确地处理用于脑电信号的大量数据集。
此外,ML算法提供的健壮网络结构使其在表征脑电信号时具有可伸缩性和实用性。癫痫发作检测必须以最低的假阴性和假阳性进行。在[9,10]中引入的离散小波变换能够处理癫痫发作中的棘波问题。离散小波变换算法可以通过对这些瞬变事件的局部化来处理尖峰信号。算法防止了尖峰事件的泛化,从而减少或最小化了信号表征过程中特定时刻的任何形式的误差。
采用混合方法对癫痫发作进行检测[11],将遗传算法嵌入到模糊逻辑中,对癫痫和非癫痫信号进行特征提取。通过将数据融合到遗传算法中以做出准确的预测,提供了对两种信号特征(癫痫和非癫痫)的各种风险评估。另一种混合方法是在[12]中引入的,其中计算智能与遗传算法相结合以确保脑电信号的最优特征。整个数据集被分为训练和验证数据集。从数据集中提取特征并用于训练遗传算法,然后使用验证数据集对训练后的模型进行验证,基于遗传算法的模型能够准确地检测癫痫发作。混合模型的效率很高,可以充分弥补每个基础模型的不足,从而产生一个精度较高的单一模型。对于这一特定的基本模型,精度在很大程度上取决于遗传算法参数的适当调整。
文献[13]中引入了另一种模型平稳小波变换,并将其用于癫痫发作的检测。该算法正确地捕获了信号边缘上在所有点上都是平稳的点。捕获这些平稳点的能力降低了错误概率。这是因为小波上通常不会被计算在内的点现在已经通过这种平稳小波算法得到了充分的表示。在不同条件下对癫痫信号和非癫痫信号进行处理,以确定其最优水平。平稳小波算法也能有效地处理沿粗