脑电研究
文章平均质量分 87
以EEG脑电信号的处理和应用于神经网络为主
爱吃榴莲的妹妹
不喜欢敲代码的计算机专业人员!
展开
-
51通过虚拟样本生成和注意神经网络进行自动和准确的癫痫波纹和快速波纹检测
ARF检测器的概述在图1中描述。具体来说,该检测器包括信号分割、虚拟样本生成、AttNN和信号标签。ARF检测器包含训练和测试两个阶段。在训练阶段,给定具有一定持续时间(即1000毫秒)的脑电信号片段的黄金标准,使用虚拟样本生成方法来增加纹波和FRs信号的大小。一个AttNN被训练来区分波纹和FRs。在测试过程中,给定一组来自病人的脑电图数据,ARF检测器将数据分离成一系列信号段,用移动窗口进入相同长度的训练数据。然后,训练好的AttNN被用来对这些片段进行分类。原创 2023-03-08 21:45:12 · 835 阅读 · 0 评论 -
基础2-用卷积神经网络进行颅内和头皮脑电图数据分析的广义癫痫预测
为了改善耐药癫痫和强直性癫痫患者的生活,癫痫预测作为最具挑战性的预测数据分析工作之一已引起越来越多的关注。许多杰出的工作报告了在提供敏感的间接(警告系统)或直接(交互式神经刺激)控制难治性癫痫方面的巨大成果,其中一些取得了很高的性能。然而,许多工作对每个患者进行大量手工特征提取和/或精心定制的特征工程,以实现对特定数据集的极高灵敏度和低错误预测率。如果使用不同的数据集,这限制了他们的方法的优势。在本文中,我们将不同的颅内和头皮脑电图(EEG)数据集,我们利用。原创 2023-01-11 16:15:43 · 1638 阅读 · 0 评论 -
基础1-用于癫痫发作预测的卷积门控递归神经网络
在本文中,我们提出了一种。原创 2023-01-10 23:26:41 · 1336 阅读 · 2 评论 -
026利用GANs合成癫痫脑活动2019
摘要:癫痫是一种慢性神经系统疾病,影响着全世界6500多万人,表现为反复无故发作。目前正在开发监测脑电图(EEG)信号的现代系统,目的是检测癫痫发作,以提醒护理人员并减少癫痫发作对患者生活质量的影响。这类系统使用机器学习算法,需要大量标记的癫痫发作数据进行训练。然而,对医学专家和患者来说,获取癫痫发作的脑电图信号是一个昂贵和耗时的过程。在这项工作中,我们生成了合成的类似癫痫发作的脑电图信号,该信号可用于训练癫痫发作检测算法,减少了对记录数据的需求。首先,我们用30名癫痫患者的数据训练生成对抗网络(GAN)。原创 2022-12-06 17:17:37 · 367 阅读 · 0 评论 -
基于生成对抗网络的癫痫发作预测2019
摘要:癫痫发作预测是最具挑战性的预测数据分析问题之一,许多杰出的研究报告了有前景的结果。这主要是因为脑电图(EEG)生物信号强度非常小,在µV范围内,在生理和非生理伪影下存在显著的感知困难。今天,精确的癫痫发作识别和数据标记的过程是由神经学家完成的。目前癫痫发作活动的不可预测性,以及对耐药癫痫患者缺乏可靠的治疗,迫切需要对准确、敏感和针对患者的癫痫发作预测进行研究。大多数癫痫发作预测算法仅使用标记数据进行训练。由于癫痫发作数据是由神经科医生手工标记的,准备标记数据既昂贵又耗时,因此充分利用数据至关重要。在这原创 2022-12-03 20:34:34 · 845 阅读 · 0 评论 -
023 TripleGan的合成癫痫脑活动2022
癫痫是一种慢性非传染性疾病,由脑神经元突然异常放电引起,导致间歇性脑功能障碍。它也是世界上最常见的神经系统疾病之一。通过机器学习、相关分析和时频分析实现基于脑电的癫痫自动检测,在癫痫的早期预警和自动识别中发挥着重要作用。在本研究中,TripleGAN分别用于。这项实验是通过CHB-MIT数据集进行的,这些数据集在世界上同行业的最新水平上运行。在CHB-MIT数据集中,分类准确率、敏感度和特异度分别超过1.19%、1.36%和0.27%。交叉对象率分别超过0.53%、2.2%和0.37%。原创 2022-10-30 17:27:55 · 724 阅读 · 6 评论 -
022 利用头皮脑电信号预测癫痫发作2021
中,使用了32个3×3的过滤器,然后是激活层、最大值合并和批归一化。用leaky ReLu代替简单的ReLu,避免了梯度消失问题。为了加快训练过程,已经应用了批量标准化。在使用这三层CNN之后,生成的图像被展平以得到1×3584的特征向量。原创 2022-10-30 09:40:29 · 1429 阅读 · 2 评论 -
021 基于深度学习的癫痫发作有效预测2019
癫痫是世界上最常见的神经系统疾病之一。癫痫发作的早期预测对癫痫患者的生活有很大影响。。其是准确地检测发作前的大脑状态,并尽早将其与发作间的流行状态区分开来,使其适合实时。。将作为系统的输入,进一步减少了计算量。提出了来提取最具区分性的特征,提高了分类精度和预测时间。该方法利用卷积神经网络提取,并利用。提出了一种来改进优化问题。提出了一种来选择最相关的脑电信号通道,这使得所提出的系统具有很好的实时性。采用了一种有效的测试方法来保证健壮性。原创 2022-10-29 17:24:46 · 2277 阅读 · 0 评论 -
020用卷积网络预测局灶性发作2017
我们方法的第一个目标是从脑电图信号中提取特征,可以用来区分不同的功能状态。我们使用CNN从脑电图信号中提取特征,并专注于显式区分前期,发作期和间期示例。由于真实的预报周期长度是未知的,第二个目标是估计预报周期的长度和最佳预报水平。由于有许多可能的候选前期周期长度,我们使用交叉验证来选择合适的长度。1)目标1:用于特征提取的卷积神经网络:CNN已经证明了相当大的成功,因为它们能够在输入中建模局部依赖,并通过权值共享减少神经网络中训练参数的数量。我们利用这两种特性在小波变换脑电图。我们使用卷积滤波器来。原创 2022-10-28 15:57:55 · 1028 阅读 · 0 评论 -
019基于脑电图信号和CNN的癫痫发作检测2018
根据世界卫生组织的数据,癫痫是一种神经系统疾病,影响着大约5000万人。虽然脑电图(EEG)在癫痫患者的大脑活动监测和癫痫诊断中发挥着重要作用,但需要专家对所有脑电图记录进行分析,以检测癫痫活动。这种方法显然是耗时和繁琐的,及时和准确的癫痫诊断对启动抗癫痫药物治疗至关重要,并随后降低未来癫痫发作和癫痫相关并发症的风险。在本研究中,基于原始脑电图信号的卷积神经网络(CNN)代替人工特征提取,用于区分癫痫发作期、前期段和间期段。我们比较了基于颅内Freiburg和头皮CHB-MIT数据库的时频域信号在癫痫信号检原创 2022-10-27 21:41:43 · 2187 阅读 · 3 评论 -
017利用颅内和头皮脑电图进行癫痫预测的卷积神经网络2018
在这个数据集中,有5个多次癫痫发作彼此接近的情况。对于癫痫发作预测任务,我们感兴趣的是预测主要的癫痫发作。因此,原创 2022-10-27 17:32:33 · 1480 阅读 · 2 评论 -
016基于STFT和域自适应的脑电癫痫预测-2021
癫痫发作预测是耐药性癫痫最常用的辅助治疗策略之一。由于,传统方法通常从同一患者收集训练和测试样本。然而,具有挑战性的问题领域之间的转换,各种科目仍然没有解决,导致低转化率的临床。本文提出了一种基于来解决这个问题。利用从原始脑电信号中提取特征,并开将这些特征映射到高维空间。该模型通过最小化嵌入空间中的域间距离来学习域不变信息,从而通过分布对齐来提高泛化能力。此外,为了增加其应用的可行性,这项工作模拟了临床抽样情况下的数据分布,并在这种情况下测试模型,这是第一次采用评估策略的研究。原创 2022-10-26 15:01:38 · 402 阅读 · 0 评论 -
015利用脑电图信号预测癫痫发作的长短期记忆深度学习网络-2018(270引用)
脑电图(EEG)是研究癫痫和捕捉大脑电活动变化的最重要手段,这些变化可能预示癫痫即将发作。在这项工作中,将长短期记忆(LSTM)网络引入到使用脑电图信号的癫痫发作预测中,扩展了深度学习算法与卷积神经网络(CNN)的应用。LSTM模型利用了分类前提取的广泛特征,包括。使用开放的头皮脑电图数据库的长期脑电图记录进行评估,表明所提出的方法能够预测所有185例癫痫发作,提供高的癫痫预测灵敏度和低的误报率(FPR),每小时0.11 - 0.02假报警(取决于预测窗口的持续时间)。原创 2022-10-25 20:59:28 · 1971 阅读 · 0 评论 -
014基于深度学习的脑电癫痫自动检测系统-2018(300引用)
CNN模型通常采用从过程到细化的方法,其中底层层包含少量的内核,而高层层包含大量的内核。但是这个结构包含了大量的可学习参数。它的复杂性很高。相反,我们采用了。原创 2022-10-25 16:27:50 · 2426 阅读 · 4 评论 -
012用于癫痫发作预测的半扩张卷积神经网络-2021
癫痫是一种神经性脑部疾病,影响全球约7500万人。预测癫痫发作对改善癫痫患者的生活质量有很大潜力,但仅凭脑电图(EEG)预测癫痫发作具有挑战性。经典的机器学习算法和各种特征工程方法已成为癫痫发作预测的支柱,但性能是可变的。在这项工作中,我们首先提出了。原创 2022-10-24 15:47:57 · 1267 阅读 · 0 评论 -
006基于近似熵、递归量化分析和卷积神经网络的癫痫发作自动检测-2019
癫痫是人类最常见的神经系统疾病。脑电图是临床诊断癫痫发作活动的常用工具,为理解癫痫障碍背后的生理机制提供了有价值的信息。近似熵和递归量化分析分别是量化非平稳信号复杂度和递归行为的非线性分析工具。卷积神经网络是一类功能强大的模型。本文提出了一种基于近似熵和递归量化分析结合卷积神经网络的癫痫脑电图自动记录方法。波恩数据集用于评估所提议的方法。结果表明,近似熵和复发量化分析对癫痫发作的检测效果良好(灵敏度、特异性和准确性均大于80%);原创 2022-10-20 20:09:26 · 1812 阅读 · 0 评论 -
005基于Hilbert振动分解的神经网络癫痫发作预测-2020
标记过程被定义为在所有癫痫。原创 2022-10-19 19:59:17 · 1167 阅读 · 0 评论 -
003基于神经网络的癫痫脑电信号检测与分类
及时诊断对挽救癫痫患者的生命至关重要。在过去的几年里,有很多治疗癫痫的方法。这些治疗需要使用抗癫痫药物,但对控制癫痫发作频率无效。需要通过手术切除受影响的区域。脑电图(EEG)是一种广泛应用于监测大脑活动的技术,在癫痫区域检测中得到广泛应用。它用于术前定位受影响的区域。这种使用脑电图图的手工过程非常耗时,而且需要深入的专业知识。本文提出了一种以文本一维向量形式保留脑电信号真实性质的模型。提出的模型达到了波恩大学数据集的最佳性能,在所有五类脑电图数据分类中,平均灵敏度、特异性分别为81%和81.4%。原创 2022-10-12 19:20:01 · 1854 阅读 · 0 评论 -
002基于小波的多类癫痫类型分类系统-2021
癫痫是最常见的脑部疾病之一,影响着全球1%以上的人口。它的特点是反复发作,发作类型不同,治疗方法也不同。脑电图(EEG)通常用于医疗服务诊断癫痫及其类型。癫痫发作的准确识别有助于为患者提供最佳的治疗和准确的信息。然而,癫痫发作的手工诊断程序是费力和高度专业化的。此外,脑电图人工评价是一个专家之间具有较低的评价一致性的过程。本文提出了一种。我们在上评估了提出的技术,并根据使用总体f1评分与现有的最先进技术进行了性能比较。原创 2022-10-11 17:11:21 · 1709 阅读 · 0 评论 -
001一种儿童癫痫发作的非通道广义癫痫检测方法-2021
癫痫发作检测原创 2022-10-09 21:27:19 · 1039 阅读 · 0 评论 -
Pycharm中MNE脑电预处理完整流程
pycharm完整mne脑电预处理流程原创 2022-09-16 23:29:49 · 1981 阅读 · 0 评论 -
MNE预处理脑电数据
脑电数据预处理基础步骤原创 2022-09-16 17:50:09 · 2642 阅读 · 0 评论 -
基于神经网络和小波变换的癫痫脑电诊断比较
论文研读Comparison of EEG based epilepsy diagnosis using neural networks and wavelet transform癫痫病是一种常见的精神疾病。本文中,创建一个单一的诊断癫痫的指令。包括两个步骤。首先,采用低通滤波器对数据进行预处理,设计3个不同频段的中通滤波器和多层神经网络;第二步,利用小波变换技术对数据进行处理。特别的是,本文提出了一种用于癫痫诊断的多层感知器神经网络分类器,该分类器需要正常数据和癫痫数据进行学习,但该分类器可以识别正常疾原创 2022-06-29 15:26:26 · 1327 阅读 · 4 评论