EEG- gan:用于脑电图(EEG)大脑信号的生成对抗网络2018

EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals

Abstract

生成对抗网络(GANs)最近在涉及图像的生成应用中非常成功,并开始应用于时间序列数据。在这里,我们将EEG- gan描述为生成脑电图(EEG)大脑信号的框架。我们引入了对Wasserstein GANs的改进训练的修改,以稳定训练并研究一系列对时间序列生成至关重要的架构选择(最显著的是向上和向下采样)。为了进行评估,我们考虑并比较不同的指标,如Inception得分、Frechet Inception距离和切片Wasserstein距离,共同表明我们的EEG- gan框架生成了自然的EEG示例。因此,它在神经科学和神经学领域开辟了一系列新的生成应用场景,例如脑机接口任务中的数据增强、脑电图超级采样或损坏数据段的恢复。产生特定类别和/或具有特定属性的信号的可能性也可能为研究大脑信号的潜在结构开辟一条新的途径。

1. Introduction

虽然机器学习的很大一部分是处理从现实数据(如分类任务)中解码信息,但最近也有一个非常活跃的领域,即如何通过隐式生成模型生成这种现实数据。例如,生成人工数据可以用于数据增强,通过生成原始数据集中不包括的自然外观的样本,从而人为地增加训练数据中的未见样本。此外,生产具有某些特性的自然外观样品的可能性,以及对模型的研究创建它们,可以成为理解用于训练GAN的原始数据分布的有用工具。GAN最近提出的生成人工数据的框架是生成对抗网络(Goodfellow等人,2014),它显示了生成人工图像的突破性结果。最初,香草GANs严重受训练不稳定性的影响,并且仅限于低分辨率的图像。Arjovsky等人,2017;Gulrajani等人,2017;Kodali等人,2017),并在训练期间逐步提高图像分辨率(Karras等人,2017)。GAN还允许有意地操纵生成样本中的特定属性(Radford et al., 2015),因此可以被证明是理解用于训练GAN的原始数据分布的有用工具。

GANs主要开发并应用于图像生成,研究时间序列的研究较少;最近,他们在生成人工音频方面展示了有希望的结果(Donahue et al., 2018)。人工脑电图信号的生成将应用于处理解码和理解大脑信号的许多不同领域,但据我们所知,目前还没有关于用GANs生成原始脑电图信号的研究发表。

在这项工作中,我们将GAN框架应用于人工脑电图信号的生成。虽然时间序列数据的生成通常采用自回归模型(例如van den Oord等人的WaveGAN(2016)),但我们故意选择了常规卷积神经网络——一方面是因为大多数GAN研究使用基于cnn的DCGAN (Radford等人,2015)架构,另一方面是因为cnn的局部和层次结构可能允许更好的可解释性(Sturm等人,2016;Kindermans等人,2017;Schirrmeister等人,2017;Hartmann等人,2018),这对神经科学或临床背景下的大脑信号尤为重要。

为了生成脑电图数据的自然样本,我们提出了对Wasserstein GAN训练的改进,显示出更高的训练稳定性。此外,我们比较了不同的评价指标,并讨论了方法和网络的架构选择在本研究中交付了最好的结果。

2. Methods

2.1. GAN background and improvementGAN背景及改进

GAN框架由两个相互对立的网络组成,试图击败对方(Goodfellow等人,2014)。第一个网络,鉴别器,被训练来区分真实和虚假的输入数据。第二个网络是生成器,它将潜在噪声变量z作为输入,并尝试生成鉴别器无法识别的假样本。这导致了一个极大极小博弈,其中生成器被鉴别器强迫产生更好的样本。

GANs的一个大缺点训练期间鉴别器的臭名昭著的不稳定性。鉴别器可能会崩溃,只识别输入分布的少数和狭窄的模式为实,这驱使生成器只产生有限数量的不同输出。Arjovsky等人,2017;Gulrajani等人,2017;Kodali等人,2017)。

Wasserstein GANs和Arjovsky等人(2017)提出的改进版本在训练稳定性方面取得了有希望的进展。原始GAN框架试图最小化真实数据分布Pr和虚假数据分布Pθ之间的Jensen-Shannon (JS)发散(Goodfellow et al., 2014)。如果鉴别器被训练为最优,这可能会导致生成器的梯度消失问题(Arj

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值