题目描述:
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。
n<=39
递归实现:
/**
* 斐波那契数列
* @author HeMing
*/
public class Fibonacci {
/*递归实现*/
private int[] fibonacciArr = new int[39];
private int notZeroSize = 0;
public int Fibonacci(int n) {
if (n<=0) {
return 0;
//throw new RuntimeException("\"n\" should not lower 1!");
}
if (n<notZeroSize) {
return fibonacciArr[n-1];
}
if (n<3) {
fibonacciArr[0] = 1;
fibonacciArr[1] = 1;
notZeroSize = 2;
return 1;
}
fibonacciArr[n-1] = Fibonacci(n-2) + Fibonacci(n-1);
notZeroSize = n;
return fibonacciArr[n-1];
}
}
循环实现:
/**
* 斐波那契数列
* @author HeMing
*/
public class Fibonacci {
/*循环实现*/
public int Fibonacci2(int n) {
if (n<1) {return 0;}
if (n==1) {return 1;}
int x = 0;
int y = 1;
int result = 0;
for (int i=2; i<=n; i++) {
result = x + y;
x = y;
y = result;
}
return result;
}
}
注意:
- 该递归方法扩展性比较差,递归时注意递归树的依赖关系,重复计算很多,且随着n的变大增长速度很快,所以要先判定该次递归是否已经计算过,若计算过,则直接返回已有的计算结果。
- 循环实现比较简单,而且不存在重复计算。