OFDM技术基本原理 (1)

本文介绍了OFDM调制技术,其基本原理是将数据在多个子载波上并行传输,可降低码间干扰。对比了OFDM与传统FDM,阐述了OFDM信号的时域表示和频谱特征。还说明了确保OFDM信号正确传输的方法,包括避免组间干扰、载波间干扰以及考虑峰均功率比等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. OFDM 调制技术介绍

OFDM 调制的基本原理是将原有的传输数据序列分配在多个不同的子载波上并行传输。因此,在通信速率保持不变的前提的下,可以将每一个子载波上的信号持续时间(码元长度)延长数倍,以降低由多径效应引起的码间干扰,从而提高数据传输的可靠性。
在这里插入图片描述

1.1 OFDM 与传统频分复用(FDM)的对比

OFDM 与传统 FDM 技术的不同之处为:OFDM的每个子载波之间是相互正交的,因此,OFDM的子载波之间不会相互干扰,而且频谱可以相互重叠。而传统FDM则要求各个子载波的频谱互不重叠。相较而言,OFDM可以更好地利用频谱资源。
在这里插入图片描述

1.2 OFDM 信号的时域表示

OFDM 的时域信号表示为各个子载波的时域信号相加,如下图所示。
在这里插入图片描述
其中 N s N_s Ns 为子载波数目; T T T 为数据传输时间; t s t_s ts 为数据传输的起始时间。如果以 d i d_i di 为传输数据, d i d_i di 为复数,则 OFDM 时域信号的公式表达为:
{ ∑ i = − N s 2 N s 2 − 1 d ( i + N s 2 ) e [ j 2 π i ( t − t s ) T ] t s ≤ t ≤ t s + T 0 0 t < t s   a n d   t > t s + T \left\{\begin{aligned} &\sum_{i=-\frac{N_s}{2}}^{\frac{N_s}{2}-1}d_{\left(i+\frac{N_s}{2}\right)}e^{\left[j2\pi i\frac{\left(t-t_s\right)}{T}\right]} && t_s\leq t \leq t_s+T 0\\ &0 && t \lt t_s \ and \ t\gt t_s+T \end{aligned} \right. i=2Ns2Ns1d(i+2Ns)e[j2πiT(tts)]0tstts+T0t<ts and t>ts+T
利用三角函数的正交性,可以保证各个子载波信号之间是相互正交的。证明如下。
上述公式中有 e [ j 2 π i ( t − t s ) T ] e^{\left[j2\pi i\frac{\left(t-t_s\right)}{T}\right]} e[j2πiT(tts)],其中 ( t − t s ) T \frac{\left(t-t_s\right)}{T} T(tts) 可理解为随时间的相位变化。令 n , m ∈ { − N s 2 , − N s 2 + 1 , … , N s 2 − 1 } n,m\in\{-\frac{N_s}{2}, -\frac{N_s}{2}+1, \dots, \frac{N_s}{2}-1\} n,m{2Ns,2Ns+1,,2Ns1}

  • m ≠ n m\neq n m=n,则有:
    < e [ j 2 π m ( t − t s ) T ] , e [ j 2 π n ( t − t s ) T ] > = ∫ 0 1 { e [ j 2 π m ( t − t s ) T ] ⋅ e [ j 2 π n ( t − t s ) T ] ‾ } d t = ∫ 0 1 e [ j 2 π ( m − n ) ( t − t s ) T ] d t = c ∫ 0 1 e [ j 2 π ( m − n ) t ] d t = c ( 1 − 1 ) = 0 \begin{aligned} &\left<e^{\left[j2\pi m\frac{\left(t-t_s\right)}{T}\right]},e^{\left[j2\pi n\frac{\left(t-t_s\right)}{T}\right]}\right> \\&=\int_0^1 \left\{e^{\left[j2\pi m\frac{\left(t-t_s\right)}{T}\right]}\cdot \overline{e^{\left[j2\pi n\frac{\left(t-t_s\right)}{T}\right]}}\right\}dt \\&=\int_0^1 e^{\left[j2\pi (m-n)\frac{\left(t-t_s\right)}{T}\right]}dt \\&=c\int_0^1 e^{\left[j2\pi (m-n)t\right]}dt \\&=c(1-1) \\&=0 \end{aligned} e[j2πmT(tts)],e[j2πnT(tts)]=01{e[j2πmT(tts)]e[j2πnT(tts)]}dt=01e[j2π(mn)T(tts)]dt=c01e[j2π(mn)t]dt=c(11)=0
    上式中 c c c 为常数。即,不同频率子载波的内积在基频信号周期内的积分值为0。
  • m = n m=n m=n ,则有:
    < e [ j 2 π m ( t − t s ) T ] , e [ j 2 π n ( t − t s ) T ] > = ∫ 0 1 { e [ j 2 π m ( t − t s ) T ] ⋅ e [ j 2 π n ( t − t s ) T ] ‾ } d t = ∫ 0 1 1 d t = 1 \begin{aligned} &\left<e^{\left[j2\pi m\frac{\left(t-t_s\right)}{T}\right]},e^{\left[j2\pi n\frac{\left(t-t_s\right)}{T}\right]}\right> \\&=\int_0^1 \left\{e^{\left[j2\pi m\frac{\left(t-t_s\right)}{T}\right]}\cdot \overline{e^{\left[j2\pi n\frac{\left(t-t_s\right)}{T}\right]}}\right\}dt \\&=\int_0^1 1dt \\&=1 \end{aligned} e[j2πmT(tts)],e[j2πnT(tts)]=01{e[j2πmT(tts)]e[j2πnT(tts)]}dt=011dt=1

1.3 OFDM信号的频谱特征

根据采样定理,接收端采样频率至少须满足两倍于信号带宽。
f s > 2 W ⇒ W f s < 1 2 ⇒ W T s < 1 2 f_s\gt2W\Rightarrow\frac{W}{f_s}\lt\frac{1}{2}\Rightarrow WT_s\lt\frac{1}{2} fs>2WfsW<21WTs<21
其中信号带宽 W = N s f W=N_sf W=Nsf N s N_s Ns为子载波数量, f f f 为基波频率。进一步得到
W T s < 1 2 ⇒ N s T s f < 1 2 WT_s\lt\frac{1}{2}\Rightarrow N_sT_sf\lt \frac{1}{2} WTs<21NsTsf<21
N s T s f N_sT_sf NsTsf x x x 轴做 OFDM 信号的频谱图可以得到:

在这里插入图片描述
在这里插入图片描述
由以上两张图片,我们可以看到由于信号的非连续性所造成的频谱泄露使得 OFDM 信号在两倍于最高子载波频率进行采样时无法满足采样定理。因此,真正传送数据时并不能完全使用全部 N s N_s Ns 个子载波,不传送数据的子载波称为虚拟子载波。

1.4 确保 OFDM 信号的正确传输

1.4.1 如何避免组间干扰 IBI (Inter-Block-Interference)

造成组间干扰的原因是信号传输过程中的多径效应。即,两组 OFDM 数据块因为多径效应造成的传输延时扩散,使得信号在到达接受端时产生重叠。因此需要在每一组 OFDM 数据之间插入保护间隔(Guard Interval)。如下图所示。
在这里插入图片描述
保护间隔的长度必须大于多径效应所造成的延时扩散,使得当前 OFDM 数据块不会受到上一组数据的干扰。另外需要注意的是,如果在保护间隔内不发射任何信号,则会因为信号的不连续而使得载波之间不再具有正交性,这样又会引入载波间干扰(ICI, Inter-Carrier-Interference)。
在这里插入图片描述

1.4.2 如何避免载波间干扰 ICI (Inter-Carrier-Interference)

如上节所述,为了保证信号的连续性,从而避免载波间干扰(ICI),我们在保护间隔内插入一段该 OFDM 数据块的末端序列,该段插入的信号长度须整数倍于基波周期。这被称为 OFDM 的循环前缀(Cyclic Prefix)。循环前缀的名称来源于该方法的具体操作方式,容易理解,循环前缀越短,通信的效率越高。
在这里插入图片描述

这样,只要传输延时扩散所造成的组间干扰可以被控制在保护间隔(Guard Interval)内,并且在一个完整的FFT区间内总是有整数倍周期的正弦波以保证载波之间的正交性,就不会有 ICI 现象发生。如下图所示。
在这里插入图片描述
其中,实线表示第一路径,虚线表示由多径效应产生的第二路径,应理解,实际情况下会有无数路径,它们最终会在接收端与原始信号相加,从而造成一定相移。相位偏移可以通过信道估测的方式加以补偿,不会影响FFT解调过程。
应该注意到,在 OFDM 信号的码元交界处有相位突变,从而造成码元间信号的不连续性。由此造成的频谱泄露会对FFT造成干扰,使得无法正确解调。因此,我们使用保护间隔和循环前缀来消除组间干扰(IBI),同时维持FFT区段各个载波之间的正交性,以消除载波间干扰(ICI)。
同样的,在接收端也必须进行码元同步,来确保抓到的FFT区间仍具有正交性。此外,发送端与接收端的载波频率需要保持一致,若载波频率没有同步,则同样会破坏子载波见的正交性,从而产生 ICI。

1.4.3 峰均功率比(PAPR, Peak-to-Average Power Ratio)

由于 OFDM 信号为多载波组合而成,因此其信号功率会随着子载波所传输的数据不同而发生变化。若功率变化范围超出放大器的线性区间,则会引入非线性失真。因此在使用多载波进行数据传输时,必须考虑 PAPR。

参考资料

复向量内积的共轭转置:weblink
三角函数的正交性:weblink
频谱泄露:weblink
什么是 OFDM 中的循环前缀:weblink

### OFDM调制解调工作原理 #### 1. 数据流转换 高速的数据流通过串并变换(S/P)被分割成多个低速的并行数据流。这种操作降低了单个子载波上的符号率,从而减少了多径效应带来的影响[^3]。 #### 2. 子载波分配 这些并行的数据流随后会被映射到不同的子载波上。每个子载波携带一部分信息,在频率域内形成离散的频谱线。为了确保各子载波之间保持正交性,即相互独立而不重叠,采用了逆离散傅立叶变换(Inverse Discrete Fourier Transform, IDFT),而实际上更常用的是其快速算法——IFFT(Inverse Fast Fourier Transform)[^1]。 ```matlab % MATLAB IFFT 实现示例 data_symbols = randn(N); % N 是子载波数量 ifft_output = ifft(data_symbols); ``` #### 3. 并串转换与保护间隔加入 经过IFFT后的信号再经历一次并串(P/S)转换成为时间序列,并在此过程中插入循环前缀(CP), 即复制一段尾部作为头部附加给整个帧结构。这一步骤有助于对抗由多路径传播引起的码间干扰(ISI)。 #### 4. 发送端处理 最后,该复合的时间域波形会经过去复数化、滤波以及D/A转换等一系列过程变成模拟电信号发送出去。 #### 5. 接收端接收 在接收侧,则相反地执行上述流程:先对接收到的连续波形做A/D采样得到数字化样本;去除CP恢复原始长度;接着利用FFT(Fast Fourier Transform)将时域信号变换成频域表示形式以便提取各个子信道的信息。 ```matlab % MATLAB FFT 实现示例 received_signal = awgn(ifft_output, snr_db); % 添加噪声模拟真实环境 fft_output = fft(received_signal); demodulated_data = real(fft_output); % 提取实部用于后续解码 ``` #### 6. 频谱效率提升 得益于紧密排列但仍互不干扰的子载波特性,OFDM能够在有限带宽下提供更高的频谱利用率,同时也增强了抗衰落能力,使得即使在一个复杂多变的无线环境中也能维持稳定高效的通信连接[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值