矩形嵌套
-
描述
-
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
-
输入
-
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
- 每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行 样例输入
-
1 10 1 2 2 4 5 8 6 10 7 9 3 1 5 8 12 10 9 7 2 2
样例输出
-
5
-
第一行是一个正正数N(0<N<10),表示测试数据组数,
题意描述: 有n个矩形,每个矩形可以用两个整数a、b描述,表示它的长和宽,
矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d,
要求选出尽量多的矩形排成一排,使得除了最后一个外,
每一个矩形都可以嵌套在下一个矩形内,如果有多解,矩形编号的字典序应尽量小
解题思路:<1>矩形之间的可嵌套关系是一个"二元关系",二元关系可以用图来建模。
如果矩形X可以嵌套在矩形Y里,就从X到Y连一条有向边(G[x][y]=1)。
这个图是无环的,因为一个矩形无法直接或间接地嵌套在自己内部,
换句话说,他是一个DAG。
这样,原问题便转化为求DAG上的最长路径。
<2>那么如何求DAG最长上的最长路径呢?
可定义状态: dp[i]表示从结点i出发所能到达的最长路径的长度
那么: dp[i] = max(dp[j]) + 1, 其中G[i][j]=1,即i可嵌套在j中
最后数组d中的最大值便是结果
<3>如何保证最小字典序?
在所有的d都计算出来以后,选择最大的d[i]所对应的i。
如果有多个i,选择最小的i。(i即第一个起点)
接下来可以选择d[i] = d[j]+1且(i,j)为边集的任何一个j,
但为了保证字典序最小,应该选择其中最小的j,
#include <iostream>
#include <cmath>
#include <cstring>
using namespace std;
const int MAXN=1005;
int T,N;
int len[MAXN],wid[MAXN];
int G[MAXN][MAXN];
int d[MAXN],best=-(1<<30);
void build() //建图
{
for(int i=0;i<N;++i)
for(int j=0;j<N;++j)
if(len[i]<len[j]&&wid[i]<wid[j])
G[i][j]=1;
}
int dp(int s) //动态规划
{
int &ans=d[s];
best=max(best,ans);
if(ans>0)
return ans;
ans=1;
for(int j=0;j<N;++j)
if(G[s][j])
{ans=max(ans,dp(j)+1);} //更新
best=max(best,ans);
return ans;
}
int main()
{
cin>>T;
while(T--)
{
memset(G,0,sizeof(G));
memset(d,-1,sizeof(d));
best=-(1<<30);
int n;
cin>>n;
N=n;
int i=0;
while(n--)
{
int a,b;
cin>>a>>b;
if(b>a)
swap(a,b);
len[i]=a;
wid[i]=b;
++i;
}
build();
for(int i=0;i<N;++i)
dp(i);
cout<<best<<endl;
}
return 0;
}