线性代数的本质

线性代数的本质

介绍:

线性代数在所有理工科,尤其是计算机科学的知识体系中,有着举足轻重的地位。但是传统的线性代数教材喜欢概念的罗列,晦涩的证明,以及复杂枯燥,又毫无意义的计算。让读者看到就头大,更别提体会到其中的美妙之处了。但是事实上,线性代数的提出是顺理成章的,线性代数的概念也是符合常识的。3Blue1Brown的B站系列视频就做到了以可视化的方式讲解线性代数的本质,看完这个系列视频,笔者受益匪浅。考虑到不是每个人都有时间和有必要看完全部视频,因此笔者整理了视频中的要点,希望对大家有所帮助。

传送门:

【官方双语/合集】线性代数的本质

引入:

线性代数存在的意义:将现实生活的事物用计算机来识别并可以进行相应的处理。

正文:

基本概念

  1. 两个向量标量乘法之和:这两个向量的线性组合。

  2. 向量空间: 给定向量仅经过向量加法与数乘运算(全部线性组合构成的向量集合)。

  3. 线性相关:有多个向量,并且可以移除一个但不减少张成的空间,则称这些向量线性相关
    其中一个向量可以表示为其他向量的线性组合。

  4. 向量空间的一个基:张成该空间的一个线性无关向量集。

  5. 复平面:z = a + bi

线性变换

  1. 变换只是函数的另一种说法,他们的共同点是获取输入,产生输出。而变换的特别点体现在变换体现了向量的移动过程。
  2. 线性变换需要满足的两个条件直线依然是直线,原点保持固定。即保持网格线平行且等距分布。
  3. 特殊的线性变换:
    (1) 旋转:rotation
    (2) shear剪切:i(1,0) j(1,1)
    (3) 列线性相关:如i(2,1) j(-2,-1) 形成两个线性相关向量所张成的一维空间
  4. 两个矩阵相乘的几何意义(连续两次线性变换 即连续两次左乘 composition)
    延伸到三维空间:3*3的矩阵表示一个线性变换

行列式(det):

  1. 线性变换有的将空间向外拉伸,有的向内挤压,行列式的绝对值用来描述变换究竟对空间有多少拉伸或挤压,即测量一个给定区域面积增大或减小的比例
  2. 行列式为0代表变换将空间压缩到更小的维度上
  3. 行列式为负值代表改变了空间的定向 (即将空间翻转:j由i的左边变到了右边)

线性方程组:

  1. Ax=v 即向量x经过线性变换A与向量v重合
  2. 逆矩阵:类似于倒带,观察v如何到x

恒等变换

  1. 解方程组:x = A^-1 v (det(A)!=0)
  2. 当变换的结果为一条直线时,也就是说结果是一维的,称变换的秩为1(即秩代表着变换后空间的维数)
  3. 所有可能的输出向量Av构成的集合,称为A的列空间
  4. 满秩:秩与列数相等
  5. 0向量一定在列空间里
  6. 对于满秩变换:有且只有0在变换后落在原点
  7. 对于非满秩变换:会有一系列向量被压缩,然后均落在原点。这些向量被称为矩阵的“零空间”/“核”
  8. 对于线性方程组,当v=0时,零空间给出的就是向量方程的所有可能解
  9. 3行2列矩阵的几何意义:将二维空间映射到三维空间上
    1行2列矩阵的几何意义:将二维空间投影到一维空间上

点积:

  1. vw=w的投影长度v的长度
  2. 对应坐标相乘 结果相加
    (正负与方向有关)
  3. 两个向量做点积:将其中一个看作线性变换(从二维到一维)
  4. 对偶性:应用线性变换和使用对偶向量点乘等价

叉积:

  1. 将三维空间映射到一维,与这个变换对偶的向量p即为叉积

  1. 表达式:A^-1MA
    暗示一种数学上的转移作用
  2. M代表一种变换
  3. 外侧矩阵代表一种转移

特征向量与特征值

  1. 几何意义:经过线性变换后,只经过了拉伸或压缩,并没有移动位置的向量称为矩阵(线性变换)的特征向量,拉伸/压缩的倍数称为特征值
  2. 举例:
    旋转:特征值为1,特征向量为对称轴
    对角矩阵:所有基向量均为特征向量,对角元为它们所属的特征值
  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值