线性代数的本质1

干货满满~昨天停更了,因为机器学习白板推导听不明白了。。所以赶紧补补线性代数的课,二刷《线性代数的本质》,内容不难,很有助于打开思维。系列文章会尽量把精华都摘下来,有理解不当处欢迎指出。有兴趣的同学也可以直接去刷视频https://www.bilibili.com/video/BV1ys411472E?p=1http://link

向量究竟是什么?

 在线性代数中,最基础最根源的组成部分就是向量,向量的加法和向量的乘法贯穿线性代数始终。而向量的定义,主要有三种角度的说法:

1)物理视角——向量是空间中的箭头,只要确定了它的长度和方向不变,就可以任意移动该向量而保持不变。

2) 计算机视角——向量是有序的数字列表,在解决具体问题时选取不同的特征作为列表进行计算。

3)数学角度(抽象)——只要保证两个向量相加以及数字与向量相乘有意义,向量可以是任何东西。

在“向量是有序的数字列表”中,如上图中黄色箭头表示的向量,第一个数告诉你从原点处沿着x轴走了多远,第二个数告诉你在此基础上沿着平行于y轴的方向走了多少。其中正数代表向右移动,负数代表向左移动。并且在线性代数中,一般默认向量的起源在原点。并且为了和坐标中的点(-2,3)进行区分,通常竖着写来表示向量\begin{bmatrix} -2\\ 3 \end{bmatrix}

每一对这样的数\begin{bmatrix} x\\ y \end{bmatrix}给出唯一一个向量,每一个向量恰好对应唯一一对数\begin{bmatrix} x\\ y \end{bmatrix}

向量的加法\vec{v}+\vec{w}

 

1)平移其中一个向量,使它的起点与另一个向量的终点重合:

 

2)然后从固定不动的向量起点出发,指向第平移向量的终点,此时构成的新向量就是\vec{v}+\vec{w}的和。:

 

3)从“计算”的角度认为向量加法就是把对应项相加:

 

 向量的数乘k\vec{v}

向量乘以一个数k,即是对向量进行拉伸压缩k倍,-k时进行反向。也可以说,数字在线性代数中起到的主要作用就是缩放向量。(线性代数中,“数字”和“标量”认为是一样的)

从“计算”的角度认为向量与标量(数字)相乘就是将向量中的每个分量与标量相乘。

 

我们看到的每一个点,其实都可以认为是以该点为终点,原点为起点的一个向量。

线性组合、张成的空间与基

每当我们用数字描述向量时,它都依赖于我们正在使用的基。上述所说的向量可以认为是对一对基向量进行“缩放之后并相加”得到的,也可以说是基向量的线性组合。</

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值