干货满满~昨天停更了,因为机器学习白板推导听不明白了。。所以赶紧补补线性代数的课,二刷《线性代数的本质》,内容不难,很有助于打开思维。系列文章会尽量把精华都摘下来,有理解不当处欢迎指出。有兴趣的同学也可以直接去刷视频https://www.bilibili.com/video/BV1ys411472E?p=1
http://link
向量究竟是什么?
在线性代数中,最基础最根源的组成部分就是向量,向量的加法和向量的乘法贯穿线性代数始终。而向量的定义,主要有三种角度的说法:
1)物理视角——向量是空间中的箭头,只要确定了它的长度和方向不变,就可以任意移动该向量而保持不变。
2) 计算机视角——向量是有序的数字列表,在解决具体问题时选取不同的特征作为列表进行计算。
3)数学角度(抽象)——只要保证两个向量相加以及数字与向量相乘有意义,向量可以是任何东西。
在“向量是有序的数字列表”中,如上图中黄色箭头表示的向量,第一个数告诉你从原点处沿着x轴走了多远,第二个数告诉你在此基础上沿着平行于y轴的方向走了多少。其中正数代表向右移动,负数代表向左移动。并且在线性代数中,一般默认向量的起源在原点。并且为了和坐标中的点(-2,3)进行区分,通常竖着写来表示向量
。
每一对这样的数
给出唯一一个向量,每一个向量恰好对应唯一一对数
。
向量的加法
:
1)平移其中一个向量,使它的起点与另一个向量的终点重合:
2)然后从固定不动的向量起点出发,指向第平移向量的终点,此时构成的新向量就是
的和。:
3)从“计算”的角度认为向量加法就是把对应项相加:
向量的数乘
:
向量乘以一个数k,即是对向量进行拉伸和压缩k倍,-k时进行反向。也可以说,数字在线性代数中起到的主要作用就是缩放向量。(线性代数中,“数字”和“标量”认为是一样的)
从“计算”的角度认为向量与标量(数字)相乘就是将向量中的每个分量与标量相乘。
我们看到的每一个点,其实都可以认为是以该点为终点,原点为起点的一个向量。
线性组合、张成的空间与基
基
每当我们用数字描述向量时,它都依赖于我们正在使用的基。上述所说的向量可以认为是对一对基向量进行“缩放之后并相加”得到的,也可以说是基向量的线性组合。</








最低0.47元/天 解锁文章
754

被折叠的 条评论
为什么被折叠?



