模型代码学习-CLS文本分类-Bert-Chinese-Text-Classification-Pytorch代码学习-模型结构

Reference:https://github.com/649453932/Bert-Chinese-Text-Classification-Pytorch

模型代码学习-CLS文本分类-Bert-Chinese-Text-Classification-Pytorch代码学习-模型结构

baseDir: Bert-Chinese-Text-Classification-Pytorch/models/

目录

./models/bert.py学习


./models/bert.py学习

这里的文本分类模型结构比较简单,基本上就是一个bert(可以理解为encoder?)加一个fc layer做分类器。一些额外补充内容的说明如下:

  • 这里class_list采用了读文件的统计方法,只要把各个label写在文件里一行一行的,这里就能自动strip(去掉首位空格)进行构建class list
  • 模型训练结果后缀是.ckpt,后续.ckpt如何使用?->在test中应该多了一行的引用过程
  • device采用torch.cuda.is_availalbe()的判断方法,但是在后续可能需要设置到是cuda几,或者说第几个gpu上
  • self.pad_size表明每句话处理成的长度,这时候要依据所需要目标处理的数据集而定,可以先统计目标数据集的文本长度分布,然后选一个几乎最长的,或者说再进行一些其他选择调整(或许一般来说,对于同一个数据集,提供的文本长度应该是差不多的&#x
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值