hdu 1081

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1081

这道题是前文提到的Max Sum的强化版:http://blog.csdn.net/custcoder/article/details/17033323

给一个二维数组,然后用一个任意大小的矩形框去框二维数组的元素,使得矩形内元素之和最大

在DP中,就是经典的最大子矩阵问题.

其实可以将二维数组转换成一位数组的最大子序列来做

固定起始行与初始行以后,将i-j行的0-n列元素的和赋值给数组arr[n],求出arr[n]的最大子序列即可

-----------------------------------------------------------------------------------------------------------------------------------------

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int sum[101];
int matrix[101][101];
int n;
void init()
{
    memset(sum,0,sizeof sum);
    memset(matrix,0,sizeof matrix);
}
int maxsub(int *maxsum,int n)
{
    int maxn=-99999;
    int sum=0;
    for(int i=0;i<n;i++)
    {
        if(sum<0)
            sum=0;
        sum+=maxsum[i];
        if(maxn<sum)
            maxn=sum;

    }
    return maxn;
}
int main()
{
    int temp=0;
    int maxn=-99999;
    while(~scanf("%d",&n))
    {
        init();
        temp=0;
        maxn=-99999;
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
            scanf("%d",&matrix[i][j]);
        for(int i=0;i<n;i++)
        {
            memset(sum,0,sizeof(sum));
            for(int j=i;j<n;j++)
            {
                for(int k=0;k<n;k++)
                {
                    sum[k]+=matrix[j][k];
                }
                temp=maxsub(sum,n);
                if(temp>maxn)
                    maxn=temp;
            }
        }
        printf("%d\n",maxn);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值