1146 Topological Order(25 分)(cj)

1146 Topological Order(25 分)

This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

gre.jpg

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

Sample Output:

3 4

code

#pragma warning(disable:4996)
#include <iostream>
#include <vector>
using namespace std;
vector<int> graph[1005];
vector<int> input(1005);
vector<int> res;
bool istopological();
int main() {
	int n, m;
	cin >> n >> m;
	int x, y;
	for (int i = 0; i < m; ++i) {
		cin >> x >> y;
		graph[x].push_back(y);
		input[y]++;
	}
	int k;
	cin >> k;
	bool f = 1;
	for (int i = 0; i < k; ++i) {
		res.clear();
		for (int i = 0; i < n; ++i) {
			cin >> x;
			res.push_back(x);
		}
		if (istopological()==0) {
			if (f) f = 0;
			else cout << ' ';
			cout << i;
		}
	}
	system("pause");
	return 0;
}
bool istopological() {
	vector<int> copy = input;
	for (int i = 0; i < res.size(); ++i) {
		if (copy[res[i]] != 0) return 0;
		for (int j = 0; j < graph[res[i]].size(); ++j) {
			--copy[graph[res[i]][j]];
		}
	}
	return 1;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值