机器学习模型中step与epoch,batch_size之间的关系

本文探讨了机器学习模型中step、epoch和batch_size的概念。step指的是梯度更新的过程,一个epoch内,若每批数据(batch_size)为100,而总数据量为2000,则需要20个step完成一个epoch。通过理解这些参数,可以更好地调整学习率以优化模型训练。
摘要由CSDN通过智能技术生成

本文主要谈谈自己对step,epoch,batch_size这几个常见参数的理解。
最近在调试模型的时候,发现在使用keras.optimizer.adam时,模型在添加了新的一层2D卷积层后难以收敛,在不调整初始权重矩阵的情况下,想通过衰减学习率来使loss function的收敛性更好。

tf.keras.optimizers.Adam(
    learning_rate=0.001,
    beta_1=0.9,
    beta_2=0.999,
    epsilon=1e-07,
    amsgrad=False,
    name="Adam",
    **kwargs
)

可以看到,adam这个optimizer在没有其他参数条件的情况下,默认学习率为固定0.001。

为了调整学习率,在keras的文档中找到了下述示例代码,代码的意思很简单,初始学习率为0.01,衰减需要的step为10000,衰减率为0.9,即每次经过10000 steps,学习率就衰减为原来的0.9。

lr_schedule = keras.optimizers.schedules.ExponentialDecay
Minst是一个手写数字识别数据集,包含60000张训练图片和10000张测试图片。PyTorch是一个基于Python的机器学习框架,它可以帮助我们快速构建、训练和测试深度神经网络。 以下是使用PyTorch进行Minst手写数字识别的步骤: 1. 导入必要的库 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms ``` 2. 加载数据集 ```python train_dataset = datasets.MNIST(root='data/', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='data/', train=False, transform=transforms.ToTensor(), download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=64, shuffle=False) ``` 3. 定义模型 ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) model = Net() ``` 4. 定义损失函数和优化器 ```python criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) ``` 5. 训练模型 ```python for epoch in range(10): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) ``` 6. 测试模型 ```python correct = 0 total = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() print('Accuracy of the model on the test images: {}%'.format(100 * correct / total)) ``` 通过以上步骤,我们可以使用PyTorch构建一个简单的卷积神经网络进行Minst手写数字识别。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值