Python中的样本T检验实现及示例代码

176 篇文章 9 订阅 ¥59.90 ¥99.00
本文介绍了Python中利用SciPy库进行样本T检验的步骤,包括导入库、准备样本数据、执行检验和解读结果,强调了p值在判断样本均值差异显著性中的作用,并提供了一个完整的示例代码。
摘要由CSDN通过智能技术生成

样本T检验是一种统计方法,用于比较两个样本均值是否具有显著差异。在Python中,我们可以使用SciPy库中的ttest_ind函数来执行样本T检验。下面是详细的步骤以及相应的示例代码。

步骤 1: 导入所需的库
首先,我们需要导入SciPy库中的ttest_ind函数以及其他可能需要的库。

import scipy.stats as stats

步骤 2: 准备样本数据
接下来,我们需要准备待比较的两个样本数据。假设我们有两组数据,分别存储在两个NumPy数组中。

import numpy as np

sample1 = np.array([
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值