LSI系统全称是“Latent Semantic Indexing“(潜在语义索引)

333 篇文章 ¥29.90 ¥99.00
LSI是潜在语义索引,一种信息检索和自然语言处理技术,通过数学向量表示文本,计算语义相关性和文本相似度。主要步骤包括文本预处理、构建词频矩阵、奇异值分解、降维和计算相似度。应用包括文本相似度计算、信息聚类和问答系统。示例代码展示了如何使用Python的scikit-learn实现LSI。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LSI系统全称是"Latent Semantic Indexing"(潜在语义索引)。LSI是一种用于信息检索和自然语言处理的技术,它通过对文本内容进行数学向量表示,实现语义上相关性的计算和文本相似度的评估。在本文中,我们将介绍LSI的原理和应用,并提供相应的Python代码示例。

LSI的原理

LSI是一种基于向量空间模型的信息检索技术,它通过降维和潜在语义分析来捕捉文本中的语义信息。LSI的核心思想是将文本表示为数学向量,在向量空间中进行计算和比较。下面是LSI的主要步骤:

  1. 文本预处理:首先,需要对原始文本进行预处理,包括分词、去除停用词、词干提取等操作。这样可以将文本转化为单词的集合。

  2. 构建词频矩阵:接下来,需要构建一个词频矩阵,其行表示文档,列表示单词,每个元素表示对应单词在文档中出现的频次。

  3. 奇异值分解(SVD):对词频矩阵进行奇异值分解,将其分解为三个矩阵的乘积:U、S和V。其中,U和V是正交矩阵,S是对角矩阵,对角线上的元素称为奇异值。

  4. 选择主题数:根据奇异值的大小,可以选择保留的主题数。奇异值越大,表示在该主题上的文本差异越大,也就是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值