论文笔记What does BERT know about books, movies and music Probing BERT for Conversational Recommendation

论文出发点:

  1. 现成的BERT模型在它们的参数中存储了多少关于推荐项目(电影,书籍,音乐)的知识

现象:BERT在NLP领域如此强劲的表现从侧面体现bert的参数里存储了 事实性知识

做了一系列探测实验探查BERT蕴含的两类知识:

  1. content-based:通过item的文本内容匹配item的标题(类别)
  2. collaborative-based:通过匹配相似item

通过三项任务:

  1. MLM掩码语言模型:通过完形填空的形式来做文本内容与文本流派的匹配;
  2. 通过下一句预测和相似度比较来探寻BERT在不fine-tune的情况下的信息检索和推荐能力。

结论:

  1. BERT在其参数中存储了关于书籍、电影和音乐内容的知识;
  2. 基于content的知识多于基于collaborative的知识;
  3. 在面对有对抗数据的对话数据上表现不理想
    在这里插入图片描述

第一个任务:MLM(掩码语言模型)

目标:生成item(电影)的流派
形式:完形填空,prompt,如:Pulp Fiction is a movie of the ___ genre.

第二个任务:推荐

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值