视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
简介
- 视频超分辨关注的主要问题有两个:一是如何充分利用多帧关联信息,而是如何有效地融合图像细节到高分辨率图像中。
- 动作补偿方面,深度学习方法用的是backward warping到参考帧,但这个方法其实并不是最优的。多帧融合方面,虽然很多CNN方法可以产生丰富的细节,但不能确定图像细节是来自内部的帧,还是外部的数据。在可缩放性方面,现有的方法对多尺度超分辨都不太灵活,包括ESPCN、VSRnet、VESPCN。
- 基于现状,作者提出一个sub-pixel motion compensation(SPMC)层,用来有效处理动作补偿和特征图缩放。另外,用一个基于LSTM的框架来处理多帧输入。
方法
- 作者提出的框架如图2所示。这个网络主要分成三个部分:motion estimation, motion compensation和detail fusion。
Motion Estimation
- motion estimation已经相对比较成熟了,方法有Flownet-S和VESPCN中的motion compensation transformer(MCT)。最后作者计划使用MCT。
Motion Compensation
- motion compensation用的就是SPMC层。首先记LR、HR图像分别为 JL 和