Detail-revealing Deep Video Super-resolution 论文笔记

本文介绍了Detail-revealing Deep Video Super-resolution论文,该研究提出了sub-pixel motion compensation(SPMC)层和基于LSTM的多帧融合框架,解决视频超分辨中的动作补偿和细节融合问题。SPMC层通过光流估计进行有效补偿,而detail fusion net则采用编码-解码结构结合LSTM处理帧间关联信息。研究采取三步训练策略,以优化模型性能。
摘要由CSDN通过智能技术生成

视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记


简介

  • 视频超分辨关注的主要问题有两个:一是如何充分利用多帧关联信息,而是如何有效地融合图像细节到高分辨率图像中。
  • 动作补偿方面,深度学习方法用的是backward warping到参考帧,但这个方法其实并不是最优的。多帧融合方面,虽然很多CNN方法可以产生丰富的细节,但不能确定图像细节是来自内部的帧,还是外部的数据。在可缩放性方面,现有的方法对多尺度超分辨都不太灵活,包括ESPCN、VSRnet、VESPCN。
  • 基于现状,作者提出一个sub-pixel motion compensation(SPMC)层,用来有效处理动作补偿和特征图缩放。另外,用一个基于LSTM的框架来处理多帧输入。

image_1bt457gll23b1p7ouqd13k21qe79.png-79.3kB

方法

  • 作者提出的框架如图2所示。这个网络主要分成三个部分:motion estimation, motion compensation和detail fusion。

Motion Estimation

  • motion estimation已经相对比较成熟了,方法有Flownet-S和VESPCN中的motion compensation transformer(MCT)。最后作者计划使用MCT。
    image_1bt465gh2hrm1r2vn1hj71cvp2d.png-7.1kB

Motion Compensation

  • motion compensation用的就是SPMC层。首先记LR、HR图像分别为 JL
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值