给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [2,4,1], k = 2
输出: 2
解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入: [3,2,6,5,0,3], k = 2
输出: 7
解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iv
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
k = 任意数
这题就是【买卖股票的最佳时机III】的一个进阶版,按常理是可以用【买卖股票的最佳时机III】的方法解的,但是会超出内存限制。
【买卖股票的最佳时机IV】实际上就是【买卖股票的最佳时机II】和【买卖股票的最佳时机III】的结合。
因为买卖一次至少需要两天。所以交易次数实际交易次数是不会超过len/2的。
那么就想到了【买卖股票的最佳时机II】能进行任意多次交易,那道题的[贪心算法]的明显比[动态规划]要高。
所以当k大于等于len/2时我们可以用贪心算法(或者动态)来做,其余的与【买卖股票的最佳时机III】一样的做法。
class Solution {
public int maxProfit(int k, int[] prices) {
int len = prices.length;
if(len <= 1 || k < 1) return 0;
if(k >= len/2) {
int ans = 0;
for(int i = 0; i < len-1; i++) {
int t = prices[i+1] - prices[i];
if(t > 0) {
ans += t;
}
}
return ans;
}else {
int[][][] dp = new int[len][k+1][2];
for(int i = 0; i < len; i++) {
for(int j = k; j > 0; j--) {
if(i == 0) {
dp[i][j][0] = 0;
dp[i][j][1] = -prices[i];
}else {
dp[i][j][0] = Math.max(dp[i-1][j][0], dp[i-1][j][1] + prices[i]);
dp[i][j][1] = Math.max(dp[i-1][j-1][0] - prices[i], dp[i-1][j][1]);
}
}
}
return dp[len-1][k][0];
}
}
}