Java实现 LeetCode 188.买卖股票的最佳时机IV(动态规划)

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [2,4,1], k = 2
输出: 2
解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:

输入: [3,2,6,5,0,3], k = 2
输出: 7
解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iv
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

k = 任意数
这题就是【买卖股票的最佳时机III】的一个进阶版,按常理是可以用【买卖股票的最佳时机III】的方法解的,但是会超出内存限制。
在这里插入图片描述
【买卖股票的最佳时机IV】实际上就是【买卖股票的最佳时机II】和【买卖股票的最佳时机III】的结合。
因为买卖一次至少需要两天。所以交易次数实际交易次数是不会超过len/2的。
那么就想到了【买卖股票的最佳时机II】能进行任意多次交易,那道题的[贪心算法]的明显比[动态规划]要高。
所以当k大于等于len/2时我们可以用贪心算法(或者动态)来做,其余的与【买卖股票的最佳时机III】一样的做法。

class Solution {
    public int maxProfit(int k, int[] prices) {
        int len = prices.length;
		if(len <= 1 || k < 1) return 0;
		if(k >= len/2) {
			int ans = 0;
			for(int i = 0; i < len-1; i++) {
				int t = prices[i+1] - prices[i];
				if(t > 0) {
					ans += t;
				}
			}
			return ans;
		}else {
			int[][][] dp = new int[len][k+1][2];
			for(int i = 0; i < len; i++) {
				for(int j = k; j > 0; j--) {
					if(i == 0) {
						dp[i][j][0] = 0;
						dp[i][j][1] = -prices[i];
					}else {
						dp[i][j][0] = Math.max(dp[i-1][j][0], dp[i-1][j][1] + prices[i]);
						dp[i][j][1] = Math.max(dp[i-1][j-1][0] - prices[i], dp[i-1][j][1]);
					}
					
				}
			}
			return dp[len-1][k][0];
		}
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值