给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。
示例 1:
输入:matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
输出:15
解释:
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.
示例 2:
输入:matrix =
[
[1,0,1],
[1,1,0],
[1,1,0]
]
输出:7
解释:
边长为 1 的正方形有 6 个。
边长为 2 的正方形有 1 个。
正方形的总数 = 6 + 1 = 7.
提示:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-square-submatrices-with-all-ones
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法学习自dalao:97wgl
状态转移方程为:dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1
也就是计算每个位置的正方形的最大边长,如果martix[i][j] == 0,那么边长自然就是0。当前位置的最大正方形边长,比如3,则包括边长为2的,为1 的正方形,所以ans等于每个位置的边长总和。
class Solution {
public int countSquares(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int[][] dp = new int[m][n];
int ans = 0;
//初始化
for(int i = 0; i < m; i++) {
if(matrix[i][0] == 1) {
dp[i][0] = 1;
ans++;
}
}
for(int i = 0; i < n; i++) {
if(matrix[0][i] == 1) {
dp[0][i] = 1;
ans++;
}
}
if(dp[0][0] == 1) ans--;
//状态转移
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
if(matrix[i][j] == 1) {
dp[i][j] = Math.min(Math.min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1;
ans += dp[i][j];
}
}
}
return ans;
}
}