K站中转内最便宜的航班
分析:
动态规划:令dp[i][j]表示从src开始,经过i站(包括src)到达j的最短距离,根据题意,最多可以经过k + 1站,因此我们最终要求的是dp[1][dst]到dp[k + 1][dst]中的最小值。
边界条件:因为初始时就位于src,所以经过0站就能到达src,且距离为0,即:dp[0][src]=0。
转移方程:如果存在一条边x->y,则dp[t][y] = min(dp[t][y], dp[t-1][x] + cost),也就是说经过t站到达y的最短距离,就等于经过t-1站到达x的最短距离再加上x->y的cost。
代码:
class Solution {
private:
const int MAX = 1e6 + 5;
public:
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int k) {
vector<vector<int>> dp(k + 2, vector<int>(n, MAX));//最多经过k + 1站
dp[0][src] = 0;
for(int t = 1; t <= k + 1; t++) {
for(vector<int>& x : flights){
int st = x[0], ed = x[1], cost = x[2];
dp[t][ed] = min(dp[t][ed], dp[t - 1][st] + cost);
}
}
int res = MAX;
for(int t = 1; t <= k + 1; t++) {
res = min(res, dp[t][dst]);
}
return res == MAX ? -1 : res;
}
};
生命游戏
分析:
简单模拟,注意由于出生和死亡是同时发生的,所以需要一个辅助矩阵保存一开始的状态。
代码:
class Solution {
private:
int dirs[8][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}, {-1, -1},{-1, 1}, {1, -1}, {1, 1}};
int get(vector<vector<int>>& board, int i, int j) {
int n = board.size(), m = board[0].size();
int cnt = 0;
for(int k = 0; k < 8; k++) {
int x = i + dirs[k][0];
int y = j + dirs[k][1];
if(x >= 0 && x < n && y >= 0 && y < m) {
if(board[x][y]) {
cnt++;
}
}
}
return cnt;
}
public:
void gameOfLife(vector<vector<int>>& board) {
int n = board.size(), m = board[0].size();
vector<vector<int>> temp;
temp.assign(board.begin(), board.end());
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
int cnt = get(temp, i, j);
if(board[i][j]) {
if(cnt < 2 || cnt > 3) {
board[i][j] = 0;
}
}else {
if(cnt == 3) {
board[i][j] = 1;
}
}
}
}
}
};
二叉树的所有路径
分析:
深度优先搜索。
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void dfs(TreeNode* root, vector<string>& res, string path) {
if(root) {
path += to_string(root->val);
if(root->left == NULL && root->right == NULL) {
res.push_back(path);
}else {
path += "->";
dfs(root->left, res, path);
dfs(root->right, res, path);
}
}
}
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> res;
string path = "";
dfs(root, res, path);
return res;
}
};
删除链表中的节点
分析:
由于没法得到待删除结点的前一个结点,所以不能使用传统方法进行删除。由于待删除结点不是最后一个结点,因此我们可以将待删除结点的下一个结点的val和next赋给待删除结点,这样遍历的时候就相当于该结点被删除了。
代码:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
void deleteNode(ListNode* node) {
node->val = (node->next)->val;
node->next = node->next->next;
//free(t);
}
};
完全二叉树的节点个数
分析:
简单dfs。
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int cnt = 0;
void dfs(TreeNode* root) {
if(root) {
cnt++;
dfs(root->left);
dfs(root->right);
}
}
int countNodes(TreeNode* root) {
dfs(root);
return cnt;
}
};
快乐数
分析:
难点在于怎么确定该数不是快乐数,如果一个数不是快乐数,那么在上述变换过程中一定会出现循环,也就是1->2->3->2->3…这种情况。因此可以用一个集合维护当前的值,如果出现重复说明该数永远不可能变为1。
代码:
class Solution {
public:
int get(int n) {
int sum = 0;
while(n) {
int x = n % 10;
sum += x * x;
n /= 10;
}
return sum;
}
bool isHappy(int n) {
set<int> st;
st.insert(n);
while(true) {
n = get(n);
if(n == 1) {
return true;
}
if(st.count(n)) {
return false;
}else {
st.insert(n);
}
}
return true;
}
};
两个数组的交集
分析:
遍历判断即可。
代码:
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
vector<int> res;
set<int> st;
for(auto x : nums1) {
if(find(nums2.begin(), nums2.end(), x) != nums2.end()) {
if(st.count(x) == 0) {
res.push_back(x);
st.insert(x);
}
}
}
return res;
}
};