PyTorch搭建LSTM实现时间序列预测(负荷预测)

39 篇文章 204 订阅
36 篇文章 147 订阅

I. 前言

在上一篇文章深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中,我详细地解释了如何利用PyTorch来搭建一个LSTM模型,本篇文章的主要目的是搭建一个LSTM模型用于时间序列预测。

系列文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测
  4. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  5. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  7. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  8. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  9. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  10. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  11. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
  12. PyTorch-LSTM时间序列预测中如何预测真正的未来值
  13. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  14. PyTorch搭建ANN实现时间序列预测(风速预测)
  15. PyTorch搭建CNN实现时间序列预测(风速预测)
  16. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  17. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
  18. PyTorch时间序列预测系列文章总结(代码使用方法)
  19. TensorFlow搭建LSTM实现时间序列预测(负荷预测)
  20. TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
  21. TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
  22. TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  23. TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  24. TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  25. TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  26. TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  27. TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  28. TensorFlow搭建ANN实现时间序列预测(风速预测)
  29. TensorFlow搭建CNN实现时间序列预测(风速预测)
  30. TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  31. PyG搭建图神经网络实现多变量输入多变量输出时间序列预测
  32. PyTorch搭建GNN-LSTM和LSTM-GNN模型实现多变量输入多变量输出时间序列预测
  33. PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测
  34. 时序预测中Attention机制是否真的有效?盘点LSTM/RNN中24种Attention机制+效果对比
  35. 详解Transformer在时序预测中的Encoder和Decoder过程:以负荷预测为例
  36. (PyTorch)TCN和RNN/LSTM/GRU结合实现时间序列预测
  37. PyTorch搭建Informer实现长序列时间序列预测
  38. PyTorch搭建Autoformer实现长序列时间序列预测

II. 数据处理

数据集为某个地区某段时间内的电力负荷数据,除了负荷以外,还包括温度、湿度等信息。

本篇文章暂时不考虑其它变量,只考虑用历史负荷来预测未来负荷。本文中,我们根据前24个时刻的负荷下一时刻的负荷。有关多变量预测请参考:PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)

def load_data(file_name):
    df = pd.read_csv('data/new_data/' + file_name, encoding='gbk')
    columns = df.columns
    df.fillna(df.mean(), inplace=True)
    return df


class MyDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __getitem__(self, item):
        return self.data[item]

    def __len__(self):
        return len(self.data)
    
    
def nn_seq_us(B):
    print('data processing...')
    dataset = load_data()
    # split
    train = dataset[:int(len(dataset) * 0.6)]
    val = dataset[int(len(dataset) * 0.6):int(len(dataset) * 0.8)]
    test = dataset[int(len(dataset) * 0.8):len(dataset)]
    m, n = np.max(train[train.columns[1]]), np.min(train[train.columns[1]])

    def process(data, batch_size, shuffle):
        load = data[data.columns[1]]
        load = load.tolist()
        data = data.values.tolist()
        load = (load - n) / (m - n)
        seq = []
        for i in range(len(data) - 24):
            train_seq = []
            train_label = []
            for j in range(i, i + 24):
                x = [load[j]]
                train_seq.append(x)
            # for c in range(2, 8):
            #     train_seq.append(data[i + 24][c])
            train_label.append(load[i + 24])
            train_seq = torch.FloatTensor(train_seq)
            train_label = torch.FloatTensor(train_label).view(-1)
            seq.append((train_seq, train_label))

        # print(seq[-1])
        seq = MyDataset(seq)
        seq = DataLoader(dataset=seq, batch_size=batch_size, shuffle=shuffle, num_workers=0, drop_last=True)

        return seq

    Dtr = process(train, B, True)
    Val = process(val, B, True)
    Dte = process(test, B, False)

    return Dtr, Val, Dte, m, n

上面代码用了DataLoader来对原始数据进行处理,最终得到了batch_size=B的数据集Dtr、Val以及Dte,Dtr为训练集,Val为验证集,Dte为测试集。

III. LSTM模型

这里采用了深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中的模型:

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 1 # 单向LSTM
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
        self.linear = nn.Linear(self.hidden_size, self.output_size)

    def forward(self, input_seq):
        batch_size, seq_len = input_seq.shape[0], input_seq.shape[1]
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0)) # output(5, 30, 64)
        pred = self.linear(output)  # (5, 30, 1)
        pred = pred[:, -1, :]  # (5, 1)
        return pred

IV. 训练

def train(args, Dtr, Val, path):
    input_size, hidden_size, num_layers = args.input_size, args.hidden_size, args.num_layers
    output_size = args.output_size
    if args.bidirectional:
        model = BiLSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
    else:
        model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)

    loss_function = nn.MSELoss().to(device)
    if args.optimizer == 'adam':
        optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
                                     weight_decay=args.weight_decay)
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
                                    momentum=0.9, weight_decay=args.weight_decay)
    scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
    # training
    min_epochs = 10
    best_model = None
    min_val_loss = 5
    for epoch in tqdm(range(args.epochs)):
        train_loss = []
        for (seq, label) in Dtr:
            seq = seq.to(device)
            label = label.to(device)
            y_pred = model(seq)
            loss = loss_function(y_pred, label)
            train_loss.append(loss.item())
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        scheduler.step()
        # validation
        val_loss = get_val_loss(args, model, Val)
        if epoch > min_epochs and val_loss < min_val_loss:
            min_val_loss = val_loss
            best_model = copy.deepcopy(model)

        print('epoch {:03d} train_loss {:.8f} val_loss {:.8f}'.format(epoch, np.mean(train_loss), val_loss))
        model.train()

    state = {'models': best_model.state_dict()}
    torch.save(state, path)

保存训练过程中在验证集上表现最好的模型。

V. 测试

def test(args, Dte, path, m, n):
    pred = []
    y = []
    print('loading models...')
    input_size, hidden_size, num_layers = args.input_size, args.hidden_size, args.num_layers
    output_size = args.output_size
    if args.bidirectional:
        model = BiLSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
    else:
        model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
    # models = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=args.batch_size).to(device)
    model.load_state_dict(torch.load(path)['models'])
    model.eval()
    print('predicting...')
    for (seq, target) in tqdm(Dte):
        target = list(chain.from_iterable(target.data.tolist()))
        y.extend(target)
        seq = seq.to(device)
        with torch.no_grad():
            y_pred = model(seq)
            y_pred = list(chain.from_iterable(y_pred.data.tolist()))
            pred.extend(y_pred)

    y, pred = np.array(y), np.array(pred)
    y = (m - n) * y + n
    pred = (m - n) * pred + n
    print('mape:', get_mape(y, pred))
    # plot
    x = [i for i in range(1, 151)]
    x_smooth = np.linspace(np.min(x), np.max(x), 900)
    y_smooth = make_interp_spline(x, y[150:300])(x_smooth)
    plt.plot(x_smooth, y_smooth, c='green', marker='*', ms=1, alpha=0.75, label='true')

    y_smooth = make_interp_spline(x, pred[150:300])(x_smooth)
    plt.plot(x_smooth, y_smooth, c='red', marker='o', ms=1, alpha=0.75, label='pred')
    plt.grid(axis='y')
    plt.legend()
    plt.show()

简单训练30轮,MAPE为5.77%:
在这里插入图片描述

VI. 源码及数据

暂无。

  • 191
    点赞
  • 1153
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 151
    评论
很高兴回答你的问题!以下是一个使用PyTorch LSTM实现时间序列预测的例子: ``` import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 准备数据 data = np.sin(np.arange(1000)*(np.pi/32)) train_x, train_y = [], [] n_step = 20 for i in range(len(data)-n_step-1): x = data[i:i+n_step] y = data[i+n_step] train_x.append(x) train_y.append(y) train_x = np.array(train_x)[..., np.newaxis] train_y = np.array(train_y)[..., np.newaxis] # 定义模型 class LSTM(nn.Module): def __init__(self, input_size=1, hidden_size=10, output_size=1, num_layers=2): super().__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, h0=None): out, (hn, cn) = self.lstm(x, h0) out = self.fc(out[:, -1, :]) return out, (hn, cn) # 训练模型 model = LSTM() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) h0 = None batch_size = 32 n_epoch = 200 for epoch in range(n_epoch): for i in range(0, len(train_x), batch_size): batch_x = torch.tensor(train_x[i:i+batch_size], dtype=torch.float32) batch_y = torch.tensor(train_y[i:i+batch_size], dtype=torch.float32) optimizer.zero_grad() if h0 is not None: h0 = (torch.zeros((model.num_layers, batch_size, model.hidden_size)), torch.zeros((model.num_layers, batch_size, model.hidden_size))) outputs, _ = model(batch_x, h0) loss = criterion(outputs, batch_y) loss.backward() optimizer.step() if epoch % 10 == 0: print('Epoch {}/{}, Loss: {:.6f}'.format(epoch+1, n_epoch, loss)) # 测试模型 model.eval() test_x = train_x[200].reshape(1, -1, 1) test_y = train_y[200] y_pred = [] for i in range(20): test_x = torch.tensor(test_x, dtype=torch.float32) output, h0 = model(test_x) test_x = output.detach().numpy() y_pred.append(output.detach().numpy()[0][0]) test_x = np.append(test_x, train_x[200][i+1:]) test_x = test_x.reshape(1, -1, 1) # 可视化结果 plt.plot(train_y[200:220], label='true') plt.plot(y_pred, label='predicted') plt.legend() plt.show() ``` 该模型用于预测一个正弦波样本序列。模型使用了一个LSTM层和一个全连接层。在训练过程中,将数据分成了多个batch,并使用MSE损失函数和Adam优化器进行优化。训练完成后,我们可以使用模型预测未来的时间序列。最后,我们将真实值和预测值绘制在一张图中进行可视化。 希望这个例子能够帮助到你!如果你有任何其他问题,请随时向我提出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 151
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值