torch_scatter.scatter()的使用方法详解

本文详细介绍了PyTorch中的scatter函数,包括参数解析、示例演示和常见问题。scatter函数用于根据指定索引对张量数据进行聚合操作,如求和或平均。通过实例展示了不同索引顺序和维度设置对结果的影响,并强调了索引长度与源张量尺寸的一致性要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 参数

在这里插入图片描述
具体来讲,scatter函数的作用就是将index中相同索引对应位置的src元素进行某种方式的操作,例如summean等,然后将这些操作结果按照索引顺序进行拼接。下面我用具体的例子来进行讲解。

2. 示例

2.1 简单示例

首先初始化src和index:

src = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])  # (3, 3)
index = torch.tensor([0, 0, 1], dtype=torch.int64)

接着使用scatter函数:

out = scatter(src, index, dim=0, reduce='mean')

我们观察index=[0, 0, 1],第0个位置和第1个位置都为0,第2个位置为1。也就是说,我们需要将src中第0个元素和第1个元素求平均变成一个元素,然后第2个元素求mean也就是本身为一个元素。如果index=[1, 0, 0],则意味着我们需要将src中第1个元素和第2个元素求平均变成一个元素,而第0个元素保持不变。

那么src中第几个元素到底是如何定义的呢?这就需要用到dim参数了。

dim=0意味着我们需要对src的维度0进行操作:

tensor([[1., 2., 3.],
        [4., 5., 6.],
        [7., 8., 9.]])

即src中第0个元素为[1, 2, 3],第1个元素为[4, 5, 6],第2个元素为[7, 8, 9]

而如果dim=1,则第0个元素为[1, 4, 7],第1个元素为[2, 5, 8],第2个元素为[3, 6, 9]

因此,如果有以下代码:

src = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])  # (3, 3)
index = torch.tensor([0, 0, 1], dtype=torch.int64)
out = scatter(src, index, dim=0, reduce='mean')

那么我们就应该将src中的第0个元素为[1, 2, 3]和第1个元素为[4, 5, 6]求平均为[2.5, 3.5, 4.5],然后第2个元素[7, 8, 9]保持不变,即:

tensor([[2.5000, 3.5000, 4.5000],
        [7.0000, 8.0000, 9.0000]])

2.2 顺序问题

上面的例子中index=[0, 0, 1],最后结果是将src中第0个元素和第1个元素求平均放到了位置0,然后src中第2个元素保持不变放到了位置1。

如果index=[1, 1, 0],结果为:

tensor([[7.0000, 8.0000, 9.0000],
        [2.5000, 3.5000, 4.5000]])

可以发现,上述结果是将src中第2个元素[7, 8, 9]保持不变放到了位置0,然后将src中第0个元素[1, 2, 3]和第1个元素[4, 5, 6]求平均保持不变放到了位置1。

也就是说,无论index怎么变化,都是优先将index中0对应位置的操作结果进行放置。

2.3 维度问题

如果src的维度为(4, 3),而我们需要对dim=0操作,也就是一共有四个元素,那么index的长度应该为4,即以下操作是不合法的:

src = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])  # (4, 3)
index = torch.tensor([1, 1, 0], dtype=torch.int64)
out = scatter(src, index, dim=0, reduce='mean')
print(out)

报错为:

RuntimeError: The expanded size of the tensor (4) must match the existing size (3) at non-singleton dimension 0.  Target sizes: [4, 3].  Tensor sizes: [3, 1]

正确做法应该是:

src = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])  # (4, 3)
index = torch.tensor([1, 1, 0, 2], dtype=torch.int64)
out = scatter(src, index, dim=0, reduce='mean')
print(out)

输出为:

tensor([[ 7.0000,  8.0000,  9.0000],
        [ 2.5000,  3.5000,  4.5000],
        [10.0000, 11.0000, 12.0000]])
### PyCharm 打开文件显示全的解决方案 当遇到PyCharm打开文件显示全的情况时,可以尝试以下几种方法来解决问题。 #### 方法一:清理缓存并重启IDE 有时IDE内部缓存可能导致文件加载异常。通过清除缓存再启动程序能够有效改善此状况。具体操作路径为`File -> Invalidate Caches / Restart...`,之后按照提示完成相应动作即可[^1]。 #### 方法二:调整编辑器字体设置 如果是因为字体原因造成的内容显示问题,则可以通过修改编辑区内的文字样式来进行修复。进入`Settings/Preferences | Editor | Font`选项卡内更改合适的字号大小以及启用抗锯齿功能等参数配置[^2]。 #### 方法三:检查项目结构配置 对于某些特定场景下的源码视图缺失现象,可能是由于当前工作空间未能正确识别全部模块所引起。此时应该核查Project Structure的Content Roots设定项是否涵盖了整个工程根目录;必要时可手动添加遗漏部分,并保存变更生效[^3]。 ```python # 示例代码用于展示如何获取当前项目的根路径,在实际应用中可根据需求调用该函数辅助排查问题 import os def get_project_root(): current_file = os.path.abspath(__file__) project_dir = os.path.dirname(current_file) while not os.path.exists(os.path.join(project_dir, '.idea')): parent_dir = os.path.dirname(project_dir) if parent_dir == project_dir: break project_dir = parent_dir return project_dir print(f"Current Project Root Directory is {get_project_root()}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值