用 SamGeo 库实现遥感影像自动分割:从本地 TIFF 到 SHP/GeoJSON 的一站式处理(Python 脚本实现)

背景:地理空间数据处理的智能化转型与 SAM 模型的革新应用

在遥感测绘、城市规划、环境监测等领域,地理空间影像数据的自动化处理一直是提升效率的核心需求。传统的影像分割方法依赖人工标注或复杂的参数调优,难以应对海量卫星 / 无人机影像的快速分析;而栅格数据(如 GeoTIFF)向矢量数据(如 SHP、GPKG、GeoJSON)的转换,也常因工具链割裂导致流程繁琐。随着人工智能技术的发展,Segment Anything Model(SAM) 的出现为通用图像分割带来了突破性进展,其 “零样本” 分割能力和高效的批量处理特性,尤其适用于地理空间领域的复杂场景。

测试数据

数据大小:83.5M
分辨率:0.2
数据来源:谷歌在线影像下载,参考文章(QGIS之三十七下载谷歌在线影像
原数据坐标属性
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GIS从业者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值